Exercises#
Ex. 11#

(→) Observe v=vU+vU⊥ and w=wU+wU⊥. Clearly,
\begin{aligned}
\langle Pv, w \rangle &= \langle v_U, w \rangle \\
&= \langle v_U, w_{U^\bot} \rangle + \langle v_U, w_U \rangle \\
&= 0 + \langle v_U, w_U \rangle \\
\langle v, Pw \rangle &= \langle v_{U^\bot}, w_U \rangle + \langle v_U, w_U \rangle \\
&= 0 + \langle v_U, w_U \rangle
\end{aligned}
(←) For U=range T and v=vU+vU⊥, we show Tv=vU.
Lemma. TvU=vU.
Since vU∈range T, by definition we know Tv0=vU. So T(Tv0)=Tv0 as T2=T, which concludes TvU=vU.
Lemma. TvU⊥=0.
By definition we know vU⊥∈(range T)⊥. But given T is self-adjoint, (range T)⊥=null T. So vU⊥∈null T.
In conclusion, Tv=TvU+TvU⊥=vU+0=vU.
Ex. 17#

Fact. For normal T, range T = range T\* and null T=null T\*. For any T, range T=(null T\*)⊥. See ex.16.
Lemma. For normal T, range T∩null T={0}.
Observe L.H.S=(null T\*)⊥∩(null T\*) by the aforementioned facts.
Theorem. null Tk=null T.
Clearly null T⊂null Tk as T0=0 for any operator T. It remains to show null Tk⊂null T.
v→Tv1→Tv2→T⋯→Tvk=0.
vk−1∈range T∩null T, so vk−1=0.
…
v1∈range T∩null T, so v1=0.
Thus Tv=v1=0, and v∈null T.
Theorem. range Tk=range T.
Let T′ be the same as T but restricted on subspace range T. Observe it is a linear operator.

We prove null T′={0}. Observe for v∈null T′, v∈range T∩null T, and hence v=0. Clearly T′0=0 as T0=0 for any operator T.
It follows dim null T′=0. By The Fundamental Theorem of Linear Maps (See Axler page 63), dim range T=dim range T′. But by definition range T′⊂range T, and therefore range T′=range T.
We conclude T[range T]=range T, The image of range T under T is exactly range T. Clearly it suffices to prove our intended theorem.
Ex. 19#

By normality we know null T=(range T)⊥. So (z1,z2,z3)⊥v, for any v∈ran T. It follows
\begin{align*}
(z_1, z_2, z_3) \cdot v &= 0 \\
(z_1, z_2, z_3) \cdot T(1, 1, 1) &= 0 \\
&= (z_1, z_2, z_3) \cdot (2, 2, 2) = 2 z_1 + 2 z_2 + 2 z_3 = 2 (z_1 + z_2 + z_3)
\end{align*}
Thus z1+z2+z3=0.