\newcommand{\ddfrac}[2]{\frac{\displaystyle{#1}}{\displaystyle{#2}}}

Exercises

Ex. 11

image

()(\rightarrow) Observe v=vU+vUv = v_U + v_{U^\bot} and w=wU+wUw = w_U + w_{U^\bot}. Clearly, \begin{aligned} \langle Pv, w \rangle &= \langle v_U, w \rangle \\ &= \langle v_U, w_{U^\bot} \rangle + \langle v_U, w_U \rangle \\ &= 0 + \langle v_U, w_U \rangle \\ \langle v, Pw \rangle &= \langle v_{U^\bot}, w_U \rangle + \langle v_U, w_U \rangle \\ &= 0 + \langle v_U, w_U \rangle \end{aligned}

()(\leftarrow) For U=range TU = range \ T and v=vU+vUv = v_U + v_{U^\bot}, we show Tv=vUTv = v_U.

Lemma. TvU=vUTv_U = v_U.

Since vUrange Tv_U \in range \ T, by definition we know Tv0=vUTv_0 = v_U. So T(Tv0)=Tv0T(Tv_0) = Tv_0 as T2=TT^2 = T, which concludes TvU=vUTv_U = v_U.

Lemma. TvU=0Tv_{U^\bot} = 0.

By definition we know vU(range T)v_{U^\bot} \in (range \ T)^\bot. But given TT is self-adjoint, (range T)=null T(range \ T)^\bot = null \ T. So vUnull Tv_{U^\bot} \in null \ T.

In conclusion, Tv=TvU+TvU=vU+0=vUTv = Tv_U + Tv_{U^\bot} = v_U + 0 = v_U.

Ex. 17

image

Fact. For normal Tnormal \ T, range Trange \ T = range T\*range \ T^\* and null T=null T\*null \ T = null \ T^\*. For any TT, range T=(null T\*)range \ T = (null \ T^\*)^\bot. See ex.16.

Lemma. For normal Tnormal \ T, range Tnull T={0}range \ T \cap null \ T = \{0\}.

Observe L.H.S=(null T\*)(null T\*)L.H.S = (null \ T^\*)^\bot \cap (null \ T^\*) by the aforementioned facts.

Theorem. null Tk=null Tnull \ T^k = null \ T.

Clearly null Tnull Tknull \ T \subset null \ T^k as T0=0T0 = 0 for any operator TT. It remains to show null Tknull Tnull \ T^k \subset null \ T.

vTv1Tv2TTvk=0v \rightarrow^T v_1 \rightarrow^T v_2 \rightarrow^T \dots \rightarrow^T v_k = 0.

vk1range Tnull Tv_{k-1} \in range \ T \cap null \ T, so vk1=0v_{k-1} = 0.

v1range Tnull Tv_1 \in range \ T \cap null \ T, so v1=0v_1 = 0.

Thus Tv=v1=0Tv = v_1 = 0, and vnull Tv \in null \ T.

Theorem. range Tk=range Trange \ T^k = range \ T.

Let TT' be the same as TT but restricted on subspace range Trange \ T. Observe it is a linear operator.

image

We prove null T={0}null \ T' = \{0\}. Observe for vnull Tv \in null \ T', vrange Tnull Tv \in range \ T \cap null \ T, and hence v=0v = 0. Clearly T0=0T'0 = 0 as T0=0T0 = 0 for any operator TT.

It follows dim null T=0dim \ null \ T' = 0. By The Fundamental Theorem of Linear Maps (See Axler page 63), dim range T=dim range Tdim \ range \ T = dim \ range \ T'. But by definition range Trange Trange \ T' \subset range \ T, and therefore range T=range Trange \ T' = range \ T.

We conclude T[range T]=range TT[range \ T] = range \ T, The image of range Trange \ T under TT is exactly range Trange \ T. Clearly it suffices to prove our intended theorem.

Ex. 19

image

By normality we know null T=(range T)null \ T = (range \ T)^\bot. So (z1,z2,z3)v(z_1, z_2, z_3) \bot v, for any vran Tv \in ran \ T. It follows \begin{align*} (z_1, z_2, z_3) \cdot v &= 0 \\ (z_1, z_2, z_3) \cdot T(1, 1, 1) &= 0 \\ &= (z_1, z_2, z_3) \cdot (2, 2, 2) = 2 z_1 + 2 z_2 + 2 z_3 = 2 (z_1 + z_2 + z_3) \end{align*} Thus z1+z2+z3=0z_1 + z_2 + z_3 = 0.