Chapter 7 - Section A

Mostafa Touny

August 18, 2023

Contents

Exercises 2
Ex. 11 2
Ex. 17 3
Ex. 19 3

Exercises

Ex. 11

(\rightarrow) Observe $v=v_{U}+v_{U^{\perp}}$ and $w=w_{U}+w_{U^{\perp}}$. Clearly,

$$
\begin{aligned}
\langle P v, w\rangle & =\left\langle v_{U}, w\right\rangle \\
& =\left\langle v_{U}, w_{U^{\perp}}\right\rangle+\left\langle v_{U}, w_{U}\right\rangle \\
& =0+\left\langle v_{U}, w_{U}\right\rangle \\
\langle v, P w\rangle & =\left\langle v_{U^{\perp}}, w_{U}\right\rangle+\left\langle v_{U}, w_{U}\right\rangle \\
& =0+\left\langle v_{U}, w_{U}\right\rangle
\end{aligned}
$$

(\leftarrow) For $U=$ range T and $v=v_{U}+v_{U^{\perp}}$, we show $T v=v_{U}$.
Lemma. $T v_{U}=v_{U}$.
Since $v_{U} \in$ range T, by definition we know $T v_{0}=v_{U}$. So $T\left(T v_{0}\right)=T v_{0}$ as $T^{2}=T$, which concludes $T v_{U}=v_{U}$.

Lemma. $T v_{U^{\perp}}=0$.
By definition we know $v_{U^{\perp}} \in(\text { range } T)^{\perp}$. But given T is self-adjoint, $(\text { range } T)^{\perp}=$ null T. So $v_{U \perp} \in$ null T.

In conclusion, $T v=T v_{U}+T v_{U \perp}=v_{U}+0=v_{U}$.

Ex. 17

Fact. For normal T, range $T=$ range T^{*} and null $T=$ null T^{*}. For any T, range $T=$ (null $\left.T^{*}\right)^{\perp}$. See ex.16.

Lemma. For normal T, range $T \cap$ null $T=\{0\}$.
Observe L.H.S $=\left(\text { null } T^{*}\right)^{\perp} \cap\left(\right.$ null $\left.T^{*}\right)$ by the aforementioned facts.
Theorem. null $T^{k}=$ null T.
Clearly null $T \subset$ null T^{k} as $T 0=0$ for any operator T. It remains to show null $T^{k} \subset$ null T.

$$
\begin{gathered}
v \rightarrow^{T} v_{1} \rightarrow^{T} v_{2} \rightarrow^{T} \cdots \rightarrow^{T} v_{k}=0 . \\
v_{k-1} \in \operatorname{range} T \cap \text { null } T, \text { so } v_{k-1}=0 . \\
\ldots \\
v_{1} \in \operatorname{range} T \cap \operatorname{null} T, \text { so } v_{1}=0 .
\end{gathered}
$$

Thus $T v=v_{1}=0$, and $v \in \operatorname{null} T$.

Theorem. range $T^{k}=$ range T.
Let T^{\prime} be the same as T but restricted on subspace range T. Observe it is a linear operator.

We prove null $T^{\prime}=\{0\}$. Observe for $v \in$ null $T^{\prime}, v \in \operatorname{range} T \cap$ null T, and hence $v=0$. Clearly $T^{\prime} 0=0$ as $T 0=0$ for any operator T.

It follows dim null $T^{\prime}=0$. By The Fundamental Theorem of Linear Maps (See Axler page 63), dim range $T=$ dim range T^{\prime}. But by definition range $T^{\prime} \subset$ range T, and therefore range $T^{\prime}=$ range T.

We conclude T range $T]=$ range T, The image of range T under T is exactly range T. Clearly it suffices to prove our intended theorem.

Ex. 19

By normality we know null $T=(\text { range } T)^{\perp}$. So $\left(z_{1}, z_{2}, z_{3}\right) \perp v$, for any $v \in$ ran T. It follows

$$
\begin{aligned}
\left(z_{1}, z_{2}, z_{3}\right) \cdot v & =0 \\
\left(z_{1}, z_{2}, z_{3}\right) \cdot T(1,1,1) & =0 \\
& =\left(z_{1}, z_{2}, z_{3}\right) \cdot(2,2,2)=2 z_{1}+2 z_{2}+2 z_{3}=2\left(z_{1}+z_{2}+z_{3}\right)
\end{aligned}
$$

Thus $z_{1}+z_{2}+z_{3}=0$.

