Chapter 7 - Section B

Mostafa Touny

January 1, 2024

Contents

Exercises 2
Ex. 01 2
Ex. 02 2

Exercises

Ex. 01

False. If there is a basis consisting of eigenvectors of T, Then $M(T)$ is diagonal. It follows $M(T) M(T)^{*}=M(T)^{*} M(T)$, Equivalently $T T^{*}=T^{*} T$, So T is self-adjoint.

Ex. 02
Assume $F=\mathbb{R}$.
Observation. $p(x)=x^{2}-5 x+6=(x-2)(x-3) . p(T)=T^{2}-5 T+6 I=(T-2 I)(T-3 I)$
The goal is $p(T)=0$. It suffices to show $p(T) v=0$ for any vector v.
By Real Spectral Theorem (p. 221), There is a basis of eigenvectors of T corresponding to eigenvalues $\lambda_{1}, . ., \lambda_{n}$. By hypothesis we know $\lambda_{i}=2$ or $\lambda_{i}=3$.

Let v be an arbitrary vector v. Then $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$. Observe $p(T)(v)=$ $p(T)\left(a_{1} v_{1}\right)+\cdots+p(T)\left(a_{n} v_{n}\right)=a_{1} p\left(\lambda_{1}\right) v_{1}+\cdots+a_{n} p\left(\lambda_{n}\right) v_{n}$. But $p\left(\lambda_{i}\right)=0$ so $p(T) v=0$.

