Chapter 7 - Section B

Mostafa Touny

January 1, 2024

Contents

Exercises																								2
Ex. 01							 								•	 •								2
Ex. 02			•	•	•	•	 	•		•	•	•		•	•	 •		•	•		•			2

Exercises

Ex. 01

False. If there is a basis consisting of eigenvectors of T, Then M(T) is diagonal. It follows $M(T)M(T)^* = M(T)^*M(T)$, Equivalently $TT^* = T^*T$, So T is self-adjoint.

Ex. 02

Assume $F = \mathbb{R}$.

Observation. $p(x) = x^2 - 5x + 6 = (x - 2)(x - 3)$. $p(T) = T^2 - 5T + 6I = (T - 2I)(T - 3I)$

The goal is p(T) = 0. It suffices to show p(T)v = 0 for any vector v.

By Real Spectral Theorem (p. 221), There is a basis of eigenvectors of T corresponding to eigenvalues $\lambda_1, ..., \lambda_n$. By hypothesis we know $\lambda_i = 2$ or $\lambda_i = 3$.

Let v be an arbitrary vector v. Then $v = a_1v_1 + \cdots + a_nv_n$. Observe $p(T)(v) = p(T)(a_1v_1) + \cdots + p(T)(a_nv_n) = a_1p(\lambda_1)v_1 + \cdots + a_np(\lambda_n)v_n$. But $p(\lambda_i) = 0$ so p(T)v = 0.