Topology Project

Mostafa Touny

May 27, 2025

Contents

Forward	2
Preliminaries Graph Theory	2 2
Complex Analysis Other	$\frac{2}{2}$
Topological Methods	3
Theorems	5
Resources	6

Forward

I had no time to prove *Lemma 2*. The general *Borsuk-Ulam* theorem requires advanced concepts in Algebraic Topology. The part of complex analysis and winding numbers is complete but needs more writing.

Preliminaries

Graph Theory

Definition. A coloring is proper if no adjacent vertices are assigned the same color.

Definition. The chromatic number $\chi(G)$ is the smallest number of colours to colour a graph.

Complex Analysis

Definition. A curve γ in open $U \subseteq \mathbb{C}$ is

 $\gamma:[a,b]\to U$

Notation. The curve γ could be expressed as a parameteric function $f(e^{2\pi i t})$ for $0 \le t \le 1$.

Definition. The continuity of a complex-valued function is defined in an analogous manner to real-valued functions.

Definition. For continuous $F : [a, b] \to \mathbb{C}$, the integral of [a, b] is

$$\int_{a}^{b} F(t) dt = \int_{a}^{b} u(t) dt + i \int_{a}^{b} v(t) dt$$

Definition. The winding number with respect to point α over closed path γ is

$$W(\gamma, \alpha) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - \alpha} \, dz$$

Definition. The degree of a function deg(f) is the wind number $W(f(e^{2\pi it}))$.

Other

Fact. Vectors of d-dim sphere are exactly the vectors of the (d+1)-dim Euclidean space whose norm is 1.

Fact. The equator of a d-dim sphere is a subspace of the d-dim Euclidean space.

Definition. The distance between a point x and a closed set C_i is $dist(x, C_i) = \inf_{y \in C_i} ||y - x||$, i.e the distance between x and the closest point of C_i .

Fact. If point p is in closed set C_i , then $dist(p, C_i) = 0$, and if not then $dist(p, C_i) > 0$.

Definition. Two points of a sphere are antipodal if they are diametrically opposite, i.e expressed as p and -p.

Definition. The open hemisphere of pole x is $H(x) = \{y \in \mathbb{S}^d \mid \langle x, y \rangle > 0\}.$

Topological Methods

Lemma 1. Given $f: S^1 \to S^1$, and $f(-z) = -f(z) \ \forall z \in S^1$, then deg(f) is odd. *Proof.* Recall by definition $deg(f) = wind(f(e^{2\pi it}))$. Set $g: [0,1] \to S^1$ by $g(t) = f(e^{2\pi it})$. If $z = e^{2\pi it}$ then $-z = e^{\pi i} = e^{\pi i} z = e^{\pi i} e^{2\pi i t} = e^{\pi i + 2\pi i t} = e^{2\pi i (t+1/2)}$. If $0 \le t \le \frac{1}{2}$ then $\frac{1}{2} \le t + \frac{1}{2} \le 1$. We have $g(t + \frac{1}{2}) = f(e^{2\pi i (t+1/2)}) = f(-z) = -f(z) = -f(e^{2\pi i t}) = -g(t)$. For a partition of [0,1] into $[0,\frac{1}{2}] \cup [\frac{1}{2},1]$, partition $[0,\frac{1}{2}]$ into $\bigcup_{k=1}^{n} [t_{k-1},t_k]$, where $|\theta_k| < \frac{\pi}{2}$ for $\frac{g(t_k)}{g(t_{k-1})} = e^{i\theta_k}$. Partition $[\frac{1}{2},1] = \bigcup_{k=1}^{n} [\frac{1}{2} + t_{k-1}, \frac{1}{2} + t_k]$.

It follows $\frac{g(\frac{1}{2}+t_k)}{g(\frac{1}{2}+t_{k-1})} = \frac{-g(t_k)}{-g(t_{k-1})} = e^{i\theta_k}.$

Observe an approximation of the integral of the winding number would be

$$\frac{1}{2\pi} \left(\sum_{i=1}^n f(z_i) \cdot \Delta_i \right) = \frac{1}{2\pi} (\theta_1 + \dots + \theta_n + \theta_1 + \dots + \theta_n)$$

Observe $g(\frac{1}{2}) = -g(0)$, and

$$\frac{g(t_n)}{g(t_{n-1})} \cdot \frac{g(t_{n-1})}{g(t_{n-2})} \cdots \cdot \frac{g(t_2)}{g(t_1)} \cdot \frac{g(t_1)}{g(t_0)} = \frac{t_n}{t_0} = \frac{1/2}{0} = -1$$
$$e^{i\theta_n} \cdot e^{i\theta_{n-1}} \cdots \cdot e^{i\theta_2} \cdot e^{i\theta_1} =$$
$$e^{i(\theta_1 + \theta_2 + \dots + \theta_n)} =$$

But we know $e^{i\pi} = -1$. Hence $\theta_1 + \theta_2 + \cdots + \theta_n = \pi + 2\pi N$ for some integer N. It follows the wind approximation is

$$\frac{1}{2\pi}((\pi + 2\pi N) + (\pi + 2\pi N)) = \frac{1}{2\pi}(2\pi + 4\pi N) = 1 + 2N$$

which is an odd number.

Indeed, a sequence of odd numbers converges to an odd number. Therefore, the winding number is odd.

Lemma 2. No map $f: S^2 \to S^1$ such that $f(-p) = -f(p) \ \forall p \in S^2$.

Theorem. 2-dim Borsuk-Ulam. If $f: S^2 \to \mathbb{R}^2$ is continuous, then $\exists p \in S^2$ such that f(-p) = f(p).

Proof. Suppose towards contradiction $f(x) \neq f(-x) \ \forall x \in S^2$. Construct map $g: S^2 \to S^1$ by

$$g(x) = \frac{f(x) - f(-x)}{||f(x) - f(-x)||_2} \in S^1$$

Observe

$$\forall x \in S^2 \quad g(-x) = \frac{f(-x) - f(-(-x))}{||f(-x) - f(-(-x))||_2} = \frac{f(-x) - f(x)}{||f(-x) - f(x)||_2} = -g(x)$$

Contradicting lemma 2.

Theorem. Borsuk-Ulam. If $f : S^n \to \mathbb{R}^n$ is continuous, then $\exists p \in S^n$ such that f(-p) = f(p).

The proof is a natural generalization but requires concepts beyond a first course in topology.

Theorem. Lyusternik & Shnirel'man. If S^n is covered by closed sets $C_1, C_2, \ldots, C_n, C_{n+1}$, then there $p \in S^n$ and C_i such that $p, -p \in C_i$.

Proof. Assume towards contradiction that if $p \in C_i$ then $-p \notin C_i$ for all $p \in S^n$. Define functions $f_1, f_2, \ldots, f_{n+1} : S^n \to \mathbb{R}$ by $f_i(x) = dist(x, C_i)$. Construct $f : S^n \to \mathbb{R}^n$ by $f(x) = (f_1(x) - f_{n+1}(x), f_2(x) - f_{n+1}(x), \ldots, f_n(x) - f_{n+1})$.

By Borsuk-Ulam there are $p, -p \in S^n$ such that f(p) = f(-p). It follows for all $1 \le i, j \le n+1$

$$f_i(p) - f_{n+1}(p) = f_i(-p) - f_{n+1}(-p)$$

$$f_j(p) - f_{n+1}(p) = f_j(-p) - f_{n+1}(-p)$$

So $f_i(p) - f_j(p) = f_i(-p) - f_j(-p)$.

Since $p \in S^n = C_1 \cup \cdots \cup C_{n+1}$, we get $p \in C_i$ for some *i*. Similarly $-p \in S^n$ so $-p \in C_j$ for some *j*. By hypothesis $i \neq j$. Clearly $f_i(p) = f_j(-p) = 0$. Then

$$f_i(p) - f_j(p) = f_i(-p) - f_j(-p)$$

 $-f_j(p) = f_i(-p)$

But $f_j(p) > 0$ since $p \notin C_j$, and similarly $f_i(p) > 0$. So we have an equality between a negative and a positive number. Contradiction.

Theorems

Definition. The Kneser graph $KG_{n,k}$ for $n \ge 2$, $k \ge 1$, has vertex set C([n], k), and any two vertices $u, v \in C([n], k)$ are adjacent if and only if they are disjoint, i.e. $u \cap v = \phi$.

Theorem. The chromatic number of the Kneser graph $KG_{n,k}$ is n - 2k + 2.

Fix n and k. Assume for the sake of contradiction, the chromatic number of Kneser graph $KG_{n,k}$ is less than n - 2k + 2. Then we have a proper coloring $c : C([n], k) \rightarrow \{1, \ldots, n-2k+1\}$ using at most n - 2k + 1 colors. Set d = n - 2k + 1 and take a set X of n vectors on the d-dim sphere \mathbb{S}^d where any d + 1 vectors are linearly independent.

Let $U_i = \{x \in \mathbb{S}^d \mid \exists k \text{-set } S \subset X, c(S) = i, S \subset H(x)\}$ for $i = 1, \ldots, d$, and take complement $A = \mathbb{S}^d \setminus (U_1 \cup \cdots \cup U_d)$. We claim each U_i is open.

To see why, fix a point $y \in S^d$, and observe $U_y = \{x \in S^{n-1} : \langle x, y \rangle > 0\}$ is open as it is the preimage of the open set $(0, \infty)$ under the continuous map $f_y(x) = \langle x, y \rangle$.

For finite k-subset $B = \{y_1, \ldots, y_k\}$, Observe

$$U_B = \bigcap_{j=1}^k U_{y_j} = \left\{ x \in S^{n-1} : \langle x, y_j \rangle > 0 \ \forall j \right\}$$

is an intersection of finitely many open sets, hence open.

Therefore $U_i = \bigcup_{\substack{B \in \binom{[n]}{k} \\ c(B)=i}} U_B$ is a union of open sets, hence *open*. Moreover complement

A is closed.

Clearly A alongside U_i do cover \mathbb{S}^d . So if none of them contains a pair of antipodal points, then neither does \mathbb{S}^d , hence contradicting the Lyusternik & Shnirel'man theorem. We aim to reach that contradiction. Consider $x \in \mathbb{S}^d$.

Case 1. $x \in U_i$, i.e H(x) contains a k-subset colored with color *i*, corresponding to a vertex colored *i*. Since H(x) and H(-x) are disjoint, any k-subset in H(-x), is disjoint from any k-subset in H(x). Thereby, corresponding vertices are adjacent. Since the coloring is proper by hypothesis, H(-x) does not contain a k-subset colored with *i*, hence $-x \notin U_i$.

Case 2. $\pm x \in A$. By definition of A, neither H(x) nor H(-x) contains a k-subset of X. Hence each of H(x) and H(-x) contains at most k-1 vectors. It follows there is at least n-2(k-1) = n-2k+2 = d+1 points in the equator $\{y \in \mathbb{S}^d \mid \langle x, y \rangle = 0\}$, contained in a subspace of dim d, concluding they are linearly dependent. Contradiction.

Finally we show a valid constructive coloring of $KG_{n,k}$ using n - 2k + 2 colors. Color each k-set with all elements in [2k - 1] with one color, and every other k-set by their largest element. Thereby we use at most n - (2k - 1) + 1 = n - 2k + 2 colors, where all k-sets of a given color intersect.

Resources

- Borsuk-Ulam Theorem by Nicolas Bourbaki
- Kneser's Conjecture by Nicolas Bourbaki
- A Course in Topological Combinatorics, Chapter 2, by Longueville
- Lecture 14. Combinatorics by Jacob Fox