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Functional Analysis from Physics

Early 20th-century physicists worked with differential
equations to model quantum phenomena.

Functional analysis emerged for a rigorous
formulation.
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Preliminary: Graph Theory

Proper Coloring. Assignment of colors to vertices,
whereby adjacent vertices are colored differently.

Chromatic Number. The smallest number of colors,
allowing a proper coloring.



Preliminary: Linear Algebra

Fact. Vectors of d-dim sphere are exactly the vectors of
the (d+1)-dim Euclidean space whose norm is 1.



Fact. The equator of a d-dim sphere is a subspace of
the d-dim Euclidean space.



Definition. Two points of a sphere are antipodal if they
are diametrically opposite, i.e expressed as p and −p.



Definition. The open hemisphere of pole x is
H(x) = {y ∈ Sd | ⟨x , y⟩ > 0}.



Topological Methods

Theorem. Borsuk-Ulam. If f : Sn → Rn is continuous,
then ∃p ∈ Sn such that f (−p) = f (p).

Note. The 2-dim case of Borsuk-Ulam is easier to show.

Corollary. Lyusternik & Shnirel’man. If Sn is covered by
open or closed sets C1,C2, . . . ,Cn,Cn+1, then there
p ∈ Sn and Ci such that p,−p ∈ Ci .

Note. In some contexts called a variant of Borsuk-Ulam.



Kneser Graph

Definition. The Kneser graph KGn,k for n ≥ 2, k ≥ 1,
has vertex set C ([n], k), and any two vertices
u, v ∈ C ([n], k) are adjacent if and only if they are
disjoint, i.e. u ∩ v = ϕ.



Lovász

Theorem. The chromatic number of the Kneser graph
KGn,k is n − 2k + 2.



Proof: Not less than n − 2k + 2

Fix n and k . Assume for the sake of contradiction, the
chromatic number of Kneser graph KGn,k is less than
n − 2k + 2. Then we have a proper coloring
c : C ([n], k) → {1, . . . , n − 2k + 1} using at most
n − 2k + 1 colors.

Set d = n − 2k + 1 and take a set X of n vectors on the
d-dim sphere Sd where any d + 1 vectors are linearly
independent.



Let Ui = {x ∈ Sd | ∃k-set S ⊂ X , c(S) = i , S ⊂ H(x)}
for i = 1, . . . , d , and take complement
A = Sd \ (U1 ∪ · · · ∪ Ud).



Each Ui is open.

To see why, fix a point y ∈ Sd , and observe
Uy = {x ∈ Sn−1 : ⟨x , y⟩ > 0} is open as it is the
preimage of the open set (0,∞) under the continuous
map fy(x) = ⟨x , y⟩.
For finite k-subset B = {y1, . . . , yk}, Observe

UB =
k⋂

j=1

Uyj =
{
x ∈ Sn−1 : ⟨x , yj⟩ > 0 ∀j

}
is an intersection of finitely many open sets, hence open.
Therefore Ui =

⋃
B∈([n]k )
c(B)=i

UB is a union of open sets,

hence open. Moreover complement A is closed.



Clearly A alongside Ui do cover Sd . So if none of them
contains a pair of antipodal points, then neither does Sd ,
hence contradicting the Lyusternik & Shnirel’man
theorem. We aim to reach that contradiction.

Consider x ∈ Sd .



Case 1. x ∈ Ui , i.e H(x) contains a k-subset colored
with color i , corresponding to a vertex colored i . Since
H(x) and H(−x) are disjoint, any k-subset in H(−x), is
disjoint from any k-subset in H(x). Thereby,
corresponding vertices are adjacent. Since the coloring is
proper by hypothesis, H(−x) does not contain a k-subset
colored with i , hence −x ̸∈ Ui .



Case 2. ±x ∈ A. By definition of A, neither H(x) nor
H(−x) contains a k-subset of X . Recall by our
construction, every k-subset is assigned a color. Hence
each of H(x) and H(−x) contains at most k − 1 vectors.
It follows there is at least
n− 2(k − 1) = n− 2k + 2 = d + 1 points in the equator
{y ∈ Sd | ⟨x , y⟩ = 0}, contained in a subspace of dim d,
concluding they are linearly dependent. Contradiction.



Proof: n − 2k + 2 coloring

We show a valid constructive coloring of KGn,k using
n − 2k + 2 colors. Color each k-set with all elements in
[2k − 1] with one color, and every other k-set by their
largest element. Thereby we use at most
n − (2k − 1) + 1 = n − 2k + 2 colors, where all k-sets of
a given color intersect.


