Homework 1

Mostafa Touny

May 26, 2025

Contents

Exer	Ċ	is	e	\mathbf{S}																														
1										•					•							•	•				•			•				
3										•	•				•	•					•	•	•				•			•				
4										•		•		•	•						•	•	•				•	•		•	•		•	
6				•			•		•	•	•	•		•	•	•	•	•	•		•	•	•				•	•		•			•	
7				•	•		•		•	•	•	•	•	•	•	•	•	•	•		•	•	•		•		•	•		•	•	•		
8				•			•		•	•	•	•	•	•	•	•	•	•	•		•	•	•				•	•		•			•	

Exercises

Sections 12 & 13, pages 83-84.

1

For every $x \in A$, we know there exists an open U_x such that $x \in U_x \subset A$. Observe $A = \bigcup_{x \in A} U_x$ is expressed as unions of open sets. By *axiom* 2, A is open.

3

Lemma. \mathcal{T}_c is a topology.

As $X - \phi = X$ and $X - X = \phi$, we get $\phi, X \in \mathcal{T}$.

For a collection of open sets $U = \bigcup_{x \in I} U_x$:

- Case. $U_x = \phi$ for all $x \in I$. Then clearly $U = \phi$ is open.
- Case. $U_{x_0} \neq \phi$ for some $x_0 \in I$. Then $X U = X \bigcup_{x \in I} = \bigcap_{x \in I} (X U_x) \subset X U_{x_0}$. It follows X - U is countable as it is a subset of a countable set.

For open U_0 and U_1 , if either is empty then $U_0 \cap U_1 = \phi$ is open. If both $X - U_0$ and $X - U_1$ are countable then so is $(X - U_0) \cup (X - U_1) = X - (U_0 \cap U_1)$.

Lemma. \mathcal{T}_{∞} is not a topology in general.

We show that by a counter-example. Let $X = \mathcal{R}$, $U_0 = R - \{0, 2, 4, ...\}$, and $U_1 = R - \{0, 1, 3, ...\}$. Clearly $R - U_0$ and $R - U_1$ are both infinite but $R - (U_0 \cup U_1) = R - (R - \{0\}) = \{0\}$ is non-empty finite, and hence not open.

4

a.

 $\bigcap \mathcal{T}_{\alpha}$ is a topology by lifting every property common along all T_{α} to $\bigcap \mathcal{T}_{\alpha}$.

 $\bigcup \mathcal{T}_{\alpha} \text{ is not a topology in general. Consider } X = \{a, b\}, \ \mathcal{T}_{a} = \{\phi, \{a\}, X\}, \text{ and } \mathcal{T}_{b} = \{\phi, \{b\}, X\}. \text{ Observe } \mathcal{T}_{a} \cup \mathcal{T}_{b} = \{\phi, \{a\}, \{b\}, X\} \text{ but } \{a\} \cup \{b\} = \{a, b\} \notin \mathcal{T}_{a} \cup \mathcal{T}_{b}.$

b.

Lemma. Unique smallest.

Let F be the family of all topologies containing $\{\mathcal{T}_{\alpha}\}$. F is non-empty as the discrete topology $\mathcal{T}_{\text{disc}}$ is finer than any topology on X. By $(a), \bigcap F$ is a topology. By minimality in set theory, it is smallest and unique.

Lemma. Unique greatest.

Observe $\mathcal{T} = \bigcap_{\alpha} \mathcal{T}_{\alpha}$ is a topology by (a). It is largest as any open set U common in all topologies will be in \mathcal{T} . For any largest such topology \mathcal{T}' , by definition $\mathcal{T}' \subset \bigcap_{\alpha} \mathcal{T}_{\alpha}$ and $|\mathcal{T}'| \geq \mathcal{T}$, implying $\mathcal{T}' = \mathcal{T}$.

c.

Smallest is $\{\phi, X, \{a\}, \{a, b\}, \{b, c\}, \{b\}\}$, and largest is $\{\phi, X, \{a\}\}$.

6

Lemma. \mathcal{R}_l is not finer than \mathcal{R}_k .

Consider $0 \in B = (-1, 1) - K$ for \mathcal{T}'' in \mathcal{R}_k . In \mathcal{R}_l , for any [y, x) where $y \leq 0 < x$, there is a small enough 1/n, concluding $[y, x) \not\subseteq B$.

Lemma. \mathcal{R}_k is not finer than \mathcal{R}_l .

Consider $0 \in [0, 1)$ in \mathcal{R}_l . For any (x', y') containing 0, it follows x' < 0 < y', and hence $(x', y') \not\subseteq [0, 1)$.

$\mathbf{7}$

 \mathcal{T}_1 contains \mathcal{T}_4 .

 \mathcal{T}_2 contains \mathcal{T}_1 .

 \mathcal{T}_5 contains \mathcal{T}_1 , \mathcal{T}_2 , and \mathcal{T}_4 .

8

a.

Since $\mathcal{Q} \subseteq \mathcal{R}$, it follows $\mathcal{B} \subseteq \mathcal{T}$. Take arbitrary open (a, b) with x contained in it. By density of rationals, there are $q, p \in \mathcal{Q}$ such that a < q < x < p < b. Hence $x \in (q, p) \subseteq (a, b)$.

b.

Since a basis generates a unique topology, if $\mathcal{T} = \mathcal{T}'$ then \mathcal{T} and \mathcal{T}' have common bases (plural of basis). It suffices to show \mathcal{C} is not a basis of the *lower limit topology*.

We show the generated topology \mathcal{T} by \mathcal{C} is missing an element in \mathcal{R}_l . Take irrational $a_0 \in [a_0, b_0) \in \mathcal{R}_l$. For any basis element $B = [q, p) \in \mathcal{C}$, either $q > a_0$ or $q < a_0$. For the former, $a_0 \notin B$. For the latter $B \not\subseteq [a_0, b_0)$. Hence $[a_0, b_0) \notin \mathcal{T}$.