Homework 2

Mostafa Touny

May 26, 2025

Contents

	Exercises															2														
1.																														
2 .																														2
3.	•																•			•			•	•						2
4.																														
																														3
																														3
8.	•			•	•												•			•	•	•	•	•		•				3

Exercises

Sections 15 & 16, pages 91-92.

1

It follows by the following observation from set theory: if $A \subseteq Y \subseteq X$, then $U \cap A = U \cap Y \cap A$ for $U \subseteq X$.

For an arbitrary $U \cap A \in \mathcal{T}_{A \subseteq Y}$ where $U \in \mathcal{T}_{Y \subseteq X}$, observe $U \cap A = U' \cap Y \cap A = U' \cap A \in \mathcal{T}_{A \subset X}$, where $U' \in \mathcal{T}_X$.

For an arbitrary $U' \cap A \in \mathcal{T}_{A \subseteq X}$ where $U' \in \mathcal{T}_X$, observe $U' \cap A = U' \cap Y \cap A = U \cap A \in \mathcal{T}_{A \subseteq Y}$, where $U \in \mathcal{T}_{Y \subseteq X}$.

$\mathbf{2}$

 \mathcal{T}'_Y is finer than \mathcal{T}_Y , as for a given $Y \cap U$ with $U \in \mathcal{T}$, by hypothesis $U \in \mathcal{T}'$ as well.

In general, \mathcal{T}'_Y is not strictly finer. As an example, consider the standard topology of \mathcal{R} as \mathcal{T} with the standard basis, and finer K-topology as \mathcal{T}' . If Y = [2,3], then observe $K = \{1/n \mid n \in \mathbb{Z}_+\} \cap Y = \phi$. It follows $((a,b) - K) \cap Y = (a,b) \cap Y$.

3

A is open in $\mathcal{T}_{\mathcal{R}}$ and \mathcal{T}_{Y} as $A = (1/2, 1) \cup (-1, -1/2)$, a union of two basis elements of \mathcal{T}_{Y} .

B is not open in $\mathcal{T}_{\mathcal{R}}$ similarly to homework 1. It is open in \mathcal{T}_{Y} as $[-1,1] \cap (1/2,2) = (1/2,1]$ and $[-1,1] \cap [-2,-1/2) = [-1,-1/2)$ are basis elements of \mathcal{T}_{Y} .

C is not open in $\mathcal{T}_{\mathcal{R}}$ similarly to homework 1. It is not open in \mathcal{T}_{Y} as for any (a, b) containing 1/2, it follows $[-1, 1] \cup (a, b)$ has a real number strictly greater than 1/2.

D is not open in both $\mathcal{T}_{\mathcal{R}}$ and \mathcal{T}_{Y} similarly.

Observe $1/x \in Z_+$ iff x = 1/n for $n \in Z_+$. For any $x \in E$, we can find the first n, such that 1/n < x < 1/(n-1). Therefore there is an open set $(a, b) \subseteq E$ which contains x. Moreover $(a, b) \subseteq [-1, 1]$. It follows E is open in both $\mathcal{T}_{\mathcal{R}}$ and \mathcal{T}_{Y} .

$\mathbf{4}$

Follows trivially. If $U \times V \in X \times Y$, then U and V are open in X and Y, respectively. Thereby, $\pi_1(U \times V) = U$ is open. $\mathbf{5}$

(a). Take arbitrary $U \times V \in X \times Y$. Then $U \in \mathcal{T}$ and $V \in \mathcal{U}$. But by hypothesis $U \in \mathcal{T}'$ and $V \in \mathcal{U}'$. In other words, $U \times V \in X' \times Y'$.

(b). No, as an open set may not be a subset of Y. A counter-example on the topological space \mathcal{R} is

- $\mathcal{T} = \mathcal{T}' = (0, 1) \cap \{ \text{standard topology on } \mathcal{R} \}$
- X = X' = Y = Y' = (0, 1)
- $\mathcal{U}' = (0,2) \cap \{ \text{standard topology on } \mathcal{R} \}$
- $\mathcal{U} = (0,1) \cap \{\text{standard topology on } \mathcal{R}\}$

6

By the density of rationals in reals, we know $\{(a, b) \mid a < b \land a, b \in Q\}$ is a basis of \mathcal{R} . By *theorem 15.1*, the result follows.

8

Unsolved