Homework 03

Mostafa Touny

May 26, 2025

Contents

Exercises																									2
6						•			•	•						•		•	•		•	•			2
8		•	•																						2
9		•	•																						3
13	•••	•	•																						3
19	• •	•	•		•	•		•	•	•	•	•	•			•		•	•	•	•	•		•	3
20		•	•		•	•	•		•	•	•	•	•		•	•		•	•	•	•	•		•	4

Exercises

Section 17, pages 101-102.

6

The following are based on the equivalence of theorem 17.5.

(a)

Take $x \in Cl(A)$. By definition $\forall U \ni x$ open, U meets A. Take $U \ni x$ arbitrary. Then $\exists y \in U \cap A$. Since $A \subseteq B$, we get $y \in U \cap B$.

(b)

 (\leftarrow) Take $x \in Cl(A) \cup Cl(B)$. WLOG assume $x \in Cl(A)$. Then if we took open $U \ni x$ arbitrary, we get $y \in U \cap A$. It follows $y \in U \cap (A \cup B)$.

 (\rightarrow) We show the contrapositive. Assume we have open $U_0 \ni x$ and open $U_1 \ni x$ with $U_0 \cap A = \phi$ and $U_1 \cap A = \phi$. Take the intersection $U = U_0 \cap U_1$ which is open. Clearly $U \cap (A \cup B) = \phi$.

(c)

If $x \in \bigcup_{\alpha} Cl(A_{\alpha})$, then for some $\alpha_0, x \in A_{\alpha_0}$, and the proof follows similarly to (b).

For a counter-example of equality, Take $X = \mathcal{R}$ and observe $(0,1) = \bigcup_{0 \le x \le 1} (0,x)$ but $1 \in [0,1] \neq \bigcup_{0 \le x \le 1} [0,x] \not\supseteq 1$. Note [0,x] is the closure of (0,x) as any closed set containing (0,x) must contain 0 and x.

8

(a)

 $Cl(A\cap B)\subseteq Cl(A)\cap Cl(B).$

By 6-a, and since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, It follows $Cl(A \cap B) \subseteq Cl(A)$ and $Cl(A \cap B) \subseteq Cl(B)$.

 $Cl(A \cap B) \not\supseteq Cl(A) \cap Cl(B).$

In $X = \mathcal{R}$, Observe $Cl(0,1) \cap Cl(1,2) = [0,1] \cap [1,2] = \{1\} \neq Cl((0,1) \cap (1,2)) = Cl(\phi) = \phi$.

(b)

$$\begin{split} &Cl(\bigcap_{\alpha}A_{\alpha})\subseteq \bigcap_{\alpha}Cl(A_{\alpha}).\\ &\text{Trivially} \bigcap_{\alpha}A_{\alpha}\subseteq A_{\alpha'} \;\forall \alpha'. \text{ By } \textit{6-a}, \, Cl(\bigcap_{\alpha}A_{\alpha})\subseteq Cl(A_{\alpha'})\;\forall \alpha'. \end{split}$$

 $Cl(\bigcap_{\alpha} A_{\alpha}) \not\supseteq \bigcap_{\alpha} Cl(A_{\alpha}).$

Follows by (a).

(c)

 $Cl(A - B) \supseteq Cl(A) - Cl(B).$

Take $x \in Cl(A)$ and $x \notin Cl(B)$. Then (1) $\forall U \ni x$ open where $U \cap A \neq \phi$. Moreover (2) we get $U_0 \ni x$ open where $U_0 \cap B = \phi$.

Consider arbitrary open $U \ni x$. Take open $U_1 = U \cap U_0$ containing x. Then $U_1 \cap B = \phi$ by (2), and substituting in (1), we get $U_1 \cap A \neq \phi$. It follows $U_1 \cap (A - B) \neq \phi$. As $U_1 \subseteq U$, thereby $U \cap (A - B) \neq \phi$.

$$Cl(A - B) \nsubseteq Cl(A) - Cl(B).$$

In $X = \mathcal{R}$, $Cl((0, 2) - (1, 2)) = Cl((0, 1]) = [0, 1] \nsubseteq Cl(0, 2) - Cl(1, 2) = [0, 2] - [1, 2] = [0, 1).$

9

 (\rightarrow) . let $x = (x_0, x_1) \in Cl(A \times B)$. Then for all open U and open U' where $U \times U' \ni (x_0, x_1)$, it follows $(U \times U') \times (A \times B) \neq \phi$.

Take arbitrary open $U \ni x_0$ and $U' \ni x_1$ in A and B, respectively. Then $U \times U' \ni (x_0, x_1)$. By hypothesis, there are $(y_0, y_1) \in (U \times U') \cap (A \times B)$. Hence $y_0 \in U \cap A$ and $y_1 \in U' \cap B$, concluding $x_0 \in Cl(A)$ and $x_1 \in Cl(B)$. i.e $x = (x_0, x_1) \in Cl(A) \times Cl(B)$.

 (\leftarrow) . Symmetric.

13

Observe Δ is closed iff $X \times X - \Delta = \{(x, y) \mid x \neq y\}$ is open.

 (\rightarrow) Consider $x \neq y$. By hypothesis there are open $U_x \ni x$ and $U_y \ni y$ where $U_x \cap U_y = \phi$. It follows $U_x \times U_y \ni (x, y)$ and $U_x \times U_y \subseteq X \times X - \Delta$. Hence $\bigcup_{x \neq y} U_x \times U_y = X \times X - \Delta$ is open

is open.

 (\leftarrow) Consider $x \neq y$ arbitrary of X. Then $(x, y) \in X \times X - \Delta$, and then there exists a basis element $U_x \times U_y$ of $X \times X$ where $U_x \ni x$, $U_y \ni y$, and $U_x \times U_y \subseteq X \times X - \Delta$. If $\exists z \in U_x \cap U_y$ we would have $(z, z) \in X \times X - \Delta$ but by definition that's prohibited. Therefore $U_x \cap U_y = \phi$.

19

(a)

$$Int A \cap Bd A$$

= Int A \circ (Cl(A) \circ Cl(X - A))
= (Int A \circ Cl(A)) \circ Cl(X - A))
= Int A \circ Cl(X - A)
= Int A \circ (X - Int A)
= \phi

$$Int A \cup Bd(A)$$

= Int A \cup (Cl(A) \cap Cl(X - A))
= (Int A \cup Cl(A)) \cap (Int A \cup Cl(X - A))
= Cl(A) \cap (Int A \cup Cl(X - A))
= Cl(A) \cap (Int A \cup (X - Int A))
= Cl(A) \cap X
= Cl(A)

 $\mathbf{20}$

(a)

For arbitrary $U \times V \subseteq Int A$, we have $V \subseteq \{0\}$. But then $V = \phi$ and $U \times \phi = \phi$, concluding $\bigcup \phi = \phi$. Thereby $Int A = \phi$.

Cl(A) = A. By 19-a, $Bd(A) = Cl(A) - Int(A) = Cl(A) - \phi = A$.

(b)

Consider open $U = \bigcup \{(0, x) \mid x > 0\}$ and open $V = \bigcup \{(0, x) \mid x > 0\} \cup \bigcup \{(x, 0) \mid x < 0\}$. Observe $U \times V = B$, thereby Int B = B.

$$Cl(B) = B$$
. By 19-a, $Bd(B) = Cl(B) - Int(B) = B - B = \phi$.

(c)

Clearly $\bigcup \{(0, x) \mid x > 0\} \times \mathcal{R} \subseteq Int C.$

We shall show equality. Assume towards contradiction there is an $(x, y) \in Int C$ not in the L.H.S set. Then $x \leq 0$ and y = 0 by definition of C. Since Int C is open there is an open set $U \times V$ of \mathcal{R}^2 that contains (x, 0). But then V contains $y \neq 0$. It follows $(x, y) \in C$ for $x \leq 0$ and $y \neq 0$. Contradiction.

By 6-b, $Cl(A \cup B) = Cl(A) \cup Cl(B) = A \cup B$. By 19-a, $Bd(A \cup B) = Cl(A \cup B) - Int(A \cup B) = A \cup B - \bigcup \{(0, x) \mid x > 0\}.$