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Exercises

Section 18, pages 111-112.
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Yes. Take arbitrary open U ∋ f(x). By continuity f−1(U) is open. Moreover x ∈
f−1(U). By hypothesis f−1(U) ∩ A ̸= ϕ. It follows ϕ ̸= f (f−1(U) ∩ A) ⊆ f(f−1(U)) ∩
f(A) = U ∩ f(A).
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(a)

(←) For open U ⊆ X, by hypothesis i−1(U) = U is also open in X ′.

(→) Take U ∈ τ. By definition U ⊆ X. By hypothesis i−1(U) = U is open in X ′, i.e
U ∈ τ′.

(b)

By (a), i continuous ←→ τ′ ⊇ τ.

Consider the continuous i−1 : X → X ′ map. By (a), i−1 continuous ←→ τ′ ⊆ τ.

The intended conclusion follows.
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Construct f : (a, b) → (0, 1) where f(x) 7→ x− a

b− a
. It is injective as

x− a

b− a
=

x′ − a

b− a
implies x = x′, and surjective as for y ∈ (0, 1) we can take x such that b > x =
y(b− a) + a > a implying f(x) = y. Hence f is bijective.

Observe for (c, d) ⊆ (0, 1) we have f−1(c, d) = (c(b−a)+a, d(b−a)+a). For an arbitrary
open U ⊆ (0, 1), we know U =

⋃
n(an, bn). Thereby f−1(Un(an, bn)) =

⋃
n f

−1(an, bn) a
union of open sets, which in turn is open.

To show [a, b] is homeomorphic with [0, 1], consider the function f : [a, b]→ [0, 1] where

f(x) 7→ x− a

b− a
. Then for y ∈ [0, 1] we can take x such that b ≥ x = y(b − a) + a ≥ a.

The remaining parts of the proof are analogous.
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(a)

Observe given a well-defined f : X → Y , if some x ∈ A ∩ B then f |A(x) = f |B(x).
Hence, the Pasting Lemma is applicable.

It follows if f |(A1 ∪ · · · ∪ AN−1) is continuous and f |AN is continuous, then so is
f |(A1 ∪ · · · ∪ AN). By ordinary induction the intended result follows on any finite
collection {Aα}.

(b)

Lemma. Let Y be a subspace of X. if U is closed in X and U ⊆ Y , then U is closed
in Y .

We know X − U is open in X. Then Y ∩ (X − U) is open in Y . It follows

Y ∩ (X − U) = (Y ∩X) ∩ (Y − U)

= Y ∩ (Y − U)

= Y − U

Thus Y − (Y − U) = U is closed in Y .

Theorem. main problem.

Consider the function f : (0, 1) → R where x 7→ 2x. It is not continuous as [0, 1] is
closed in R but f−1([0, 1]) = (0, 1/2] is not closed in (0, 1).

Take An =

[
1

n
, 1− 1

n

]
and observe

⋃∞
n An = (0, 1).

Let B be an arbitrary closed set in R. Then {y/2 | y ∈ B} is closed in R. To see why,
take z a limit point of it. Then 2z would be a limit point of B and it follows 2z ∈ B,
concluding 2z/2 = z is contained in the set.

Thereby f−1|An(B) = {y/2 | y ∈ B} ∩ An is closed in R. Since An is a subspace of R
and f−1|An(B) ⊆ An, by our lemma, we conclude f−1|An(B) is closed in An also.
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Let U × V be an arbitrary open set of B ×D. By definition U and V are respectively
open in B and D. By hypothesis the following are open sets

f−1(U) = {a ∈ A | f(a) ∈ U}
g−1(V ) = {c ∈ C | g(c) ∈ V }
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Moreover, by definition

(f × g)−1(U × V ) = {(a, c) ∈ A× C | f(a) ∈ U ∧ f(c) ∈ V }
= f−1(U)× g−1(V )

Which is open by definition of product topology.
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Let g1 : Ā→ Y and g2 : Ā→ Y be two extensions of f . Then g1(x) = g2(x) ∀x ∈ A (1).
Take x ∈ Ā and assume towards contradiction g1(x) ̸= g2(x).

Note ∀U ∋ x open, U ∩ A ̸= ϕ (2).

Since Y is Hausdorff, there are open sets V1 ∋ g1(x) and V2 ∋ g2(x) where V1 ∩ V2 = ϕ
(3).

By continuity of g1 and g2 along thm 18.1, there are open U1 ∋ x and U2 ∋ x such that
g1(U1) ⊆ V1 and g2(U2) ⊆ V2 (4).

Take open U = U1 ∩ U2 and note U ∋ x, implying by (2) ∃x0 ∈ U ∩ A. By (1),
g1(x0) = g2(x0). By (4), a contradiction of (3) is reached ■
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