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Exercises

Section 19

1

We satisfy the definition of a basis for a Box Topology.

For x = (xα) ∈
∏

α Xα we have xα ∈ Xα, implying the existence of a basis element Bα

in Xα, where xα ∈ Bα. Hence x ∈
∏

αBα.

Assume x ∈
∏

αBα ∩
∏

α B
′
α. Then xα ∈ Bα ∩B′

α, implying the existence of B′′
α, where

xα ∈ B′′
α ⊂ B ∩B′. Hence x ∈

∏
B′′

α ⊂
∏

B′
α ∩

∏
B′′

α.

For a Product Topology, the proof is similar, except we will have finitely many Bα. Fix
α and observe xα ∈ Xα ⊂ Xα where Xα is open.

2

We set the following notation:

BAα basis of Aα

BΠXα = {ΠαBα | finitely Bα ∈ BXα , and remaining Bα = Xα} basis of product topology ΠαXα

BΠAα = {ΠαBα | finitely Bα ∈ BAα , and remaining Bα = Aα} basis of product topology ΠαAα

B(s)
ΠAα

= {B ∩ ΠαAα | B ∈ BΠXα} basis of the subspace induced by ΠαXα

It suffices to show BΠAα = B(s)
ΠAα

.

Observe Xα ∩Aα = Aα, and that for Bα ∈ BXα it follows Bα ∩Aα is a basis element of
BAα .

6

Take arbitrary x ∈
∏

Xα and consider any neighbourhood U . Then we have a basis
element B where x ∈ B ⊂ U . By definition B =

∏
Uα where finitely many Ui are open

in Xi for i = 1, . . . , k, and remainings are exactly Xα. For each i, and by hypothesis,
all but finitely many x

(i)
n are in Ui. Let U ′

i = {xn | x(i)
n ∈ Ui} and take U ′ =

⋂k
i=1 U

′
i .

Observe all (xn) except finite U ′ are in U . ■

Not true for box topology. As a counter example, from analysis we know fi(n) =
i

n
is

point-wise convergent to 0 but not uniformly convergent to it. Accordingly set x
(i)
n =

i

n
for product topology Rω =

∏
n∈Z+

R. ■
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7

We show R∞ is closed to conclude cl (R∞) = R∞.

Let x = (x1, x2, . . . ) be a limit point of R∞. Then for each xi, we can choose small
enough (ai, bi) ∋ xi, to form an open U =

∏
i(ai, bi) of Rω. It follows, some x′ =

(x′
1, x

′
2, . . . ) ∈ U ∩R∞. By definition, x′ has some index k whereby x′

j = 0 for all j ≥ k.
But if 0 = x′

j ∈ (aj, bj) for arbitrarily small (aj, bj) ∋ xj, then necessarily xj = 0. So
for x we have xj = 0 for all j ≥ k, concluding x ∈ R∞. ■
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(a)

Consider the set S =
⋃

α{f−1
α (Uα) | Uα open in Xα}. The set of all topologies τβ

containing S is non-empty as witnessed by the discrete topology. Taking
⋂

β τβ is the
unique coarsest topology containing S.

The argument follows the same line of reasoning of exercise 4 in section 13.

(b)

τS ⊇
⋂

β τβ

Generate a topology τS by S as a subbasis. Then by definition it contains all elements
of S.

τS ⊆
⋂

β τβ

Consider any topology τβ containing S. Then by topology’s axioms, τβ contains
finite intersections of S, and in turn arbitrary unions of those intersections. Hence
τS ⊆ τβ ∀β. It follows τS ⊆

⋂
β τβ.

(c)

(→) Fix α. Take Uα open in Xα. Then f−1
α (Uα) is open in A relative to topology τ.

By hypothesis g−1(f−1
α (Uα)) = (fα ◦ g)−1(Uα) is open in Y .

(←) Consider a basis element B in A. Relative to topology τ, we know B = f−1
α1

(Uα1)∩
f−1
α2

(Uα2) ∩ · · · ∩ f−1
αk

(Uαk
). For i = 1, . . . , k, since Uαi

is open in Xαi
, by hypothesis we

have (fαi
◦ g)−1(Uαi

) = g−1(g−1
α (Uα)) is open.

By topology’s axioms, g−1(f−1
α1

(Uα1)) ∩ · · · ∩ g−1(f−1
αk

(Uαk
)) is open. Since g is a well-

defined function, uniquely assigning elements, g−1 is injective. It follows

g−1(f−1
α1

(Uα1)) ∩ · · · ∩ g−1(f−1
αk

(Uαk
)) = g−1(f−1

α1
(Uα1) ∩ · · · ∩ f−1

αk
(Uαk

)) ■
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(d)

Proposition. If function f : X → Y maps each basis element B of X to a basis
element B′ of Y , then f(U) is open in Y for every open U in X.

Lemma. For a fixed α, the image of f−1
α (Uα) in τ, is a basis element of τZ .

Observe the basis of τZ is {
∏

α Uα ∩ Z | all are Xα except finitely Uα are open}.

Fix α and consider f−1
α (Uα) in τ. Accordingly, consider

∏
β Uβ ∩Z where Uβ = Xβ for

β ̸= α. Note it is a basis element of τZ .

We claim f(f−1
α (Uα)) =

∏
β Uβ ∩ Z.

(→) fα(x) ∈ Uα for x ∈ f−1
α (Uα).

(←) For arbitrary y in the R.H.S, it has at index α an element in Uα. So y = f(x)
where x ∈ f−1(Uα).

Corollary. The image of a basis element of A is a basis element of τZ .

Following the same line of reasoning it can be shown a finite intersection f−1
α (Uα) ∩

· · · ∩ f−1
α (Uα) is a basis element of τZ .

Theorem. Main problem.

Follows by the corollary alongside the proposition.
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