Homework 05

Mostafa Touny

May 26, 2025

Contents

cises	2	
		•
	2	•
	2	•
		•
)	Ĵ	•
(a)	Ĵ	•
(b)	Ĵ	•
(c)	Ĵ	•
(d)	4	

Exercises

Section 19

1

We satisfy the definition of a basis for a *Box Topology*.

For $\mathbf{x} = (x_{\alpha}) \in \prod_{\alpha} X_{\alpha}$ we have $x_{\alpha} \in X_{\alpha}$, implying the existence of a basis element B_{α} in X_{α} , where $x_{\alpha} \in B_{\alpha}$. Hence $\mathbf{x} \in \prod_{\alpha} B_{\alpha}$.

Assume $\mathbf{x} \in \prod_{\alpha} B_{\alpha} \cap \prod_{\alpha} B'_{\alpha}$. Then $x_{\alpha} \in B_{\alpha} \cap B'_{\alpha}$, implying the existence of B''_{α} , where $x_{\alpha} \in B''_{\alpha} \subset B \cap B'$. Hence $\mathbf{x} \in \prod B''_{\alpha} \subset \prod B'_{\alpha} \cap \prod B''_{\alpha}$.

For a *Product Topology*, the proof is similar, except we will have finitely many B_{α} . Fix α and observe $x_{\alpha} \in X_{\alpha} \subset X_{\alpha}$ where X_{α} is open.

$\mathbf{2}$

We set the following notation:

 $\begin{array}{l} \mathcal{B}_{A_{\alpha}} & \text{basis of } A_{\alpha} \\ \mathcal{B}_{\Pi X_{\alpha}} = \{\Pi_{\alpha} B_{\alpha} \mid \text{finitely } B_{\alpha} \in \mathcal{B}_{X_{\alpha}}, \text{ and remaining } B_{\alpha} = X_{\alpha}\} \\ \mathcal{B}_{\Pi A_{\alpha}} = \{\Pi_{\alpha} B_{\alpha} \mid \text{finitely } B_{\alpha} \in \mathcal{B}_{A_{\alpha}}, \text{ and remaining } B_{\alpha} = A_{\alpha}\} \\ \mathcal{B}_{\Pi A_{\alpha}} = \{B \cap \Pi_{\alpha} A_{\alpha} \mid B \in \mathcal{B}_{\Pi X_{\alpha}}\} \\ \end{array}$ basis of product topology $\Pi_{\alpha} A_{\alpha} \\ \mathcal{B}_{\Pi A_{\alpha}}^{(s)} = \{B \cap \Pi_{\alpha} A_{\alpha} \mid B \in \mathcal{B}_{\Pi X_{\alpha}}\} \\ \end{array}$

It suffices to show $\mathcal{B}_{\Pi A_{\alpha}} = \mathcal{B}_{\Pi A_{\alpha}}^{(s)}$. Observe $X_{\alpha} \cap A_{\alpha} = A_{\alpha}$, and that for $B_{\alpha} \in \mathcal{B}_{X_{\alpha}}$ it follows $B_{\alpha} \cap A_{\alpha}$ is a basis element of $\mathcal{B}_{A_{\alpha}}$.

6

Take arbitrary $\mathbf{x} \in \prod X_{\alpha}$ and consider any neighbourhood U. Then we have a basis element B where $x \in B \subset U$. By definition $B = \prod U_{\alpha}$ where finitely many U_i are open in X_i for $i = 1, \ldots, k$, and remainings are exactly X_{α} . For each i, and by hypothesis, all but finitely many $x_n^{(i)}$ are in U_i . Let $U'_i = \{\mathbf{x}_n \mid x_n^{(i)} \in U_i\}$ and take $U' = \bigcap_{i=1}^k U'_i$. Observe all (\mathbf{x}_n) except finite U' are in U.

Not true for box topology. As a counter example, from analysis we know $f_i(n) = \frac{i}{n}$ is point-wise convergent to 0 but not uniformly convergent to it. Accordingly set $x_n^{(i)} = \frac{i}{n}$ for product topology $\mathbb{R}^{\omega} = \prod_{n \in \mathbb{Z}_+} \mathbb{R}$.

7

We show R^{∞} is closed to conclude $cl(R^{\infty}) = R^{\infty}$.

Let $\mathbf{x} = (x_1, x_2, ...)$ be a limit point of R^{∞} . Then for each x_i , we can choose small enough $(a_i, b_i) \ni x_i$, to form an open $U = \prod_i (a_i, b_i)$ of R^{ω} . It follows, some $\mathbf{x}' = (x'_1, x'_2, ...) \in U \cap R^{\infty}$. By definition, \mathbf{x}' has some index k whereby $x'_j = 0$ for all $j \ge k$. But if $0 = x'_j \in (a_j, b_j)$ for arbitrarily small $(a_j, b_j) \ni x_j$, then necessarily $x_j = 0$. So for \mathbf{x} we have $x_j = 0$ for all $j \ge k$, concluding $\mathbf{x} \in R^{\infty}$.

10

(a)

Consider the set $S = \bigcup_{\alpha} \{ f_{\alpha}^{-1}(U_{\alpha}) \mid U_{\alpha} \text{ open in } X_{\alpha} \}$. The set of all topologies \mathcal{T}_{β} containing S is non-empty as witnessed by the discrete topology. Taking $\bigcap_{\beta} \mathcal{T}_{\beta}$ is the unique coarsest topology containing S.

The argument follows the same line of reasoning of exercise 4 in section 13.

(b)

 $\tau_{\mathcal{S}} \supseteq \bigcap_{\beta} \tau_{\beta}$

Generate a topology $\mathcal{T}_{\mathcal{S}}$ by \mathcal{S} as a subbasis. Then by definition it contains all elements of \mathcal{S} .

 $\tau_{\mathcal{S}} \subseteq \bigcap_{\beta} \tau_{\beta}$

Consider any topology τ_{β} containing S. Then by topology's axioms, τ_{β} contains finite intersections of S, and in turn arbitrary unions of those intersections. Hence $\tau_{S} \subseteq \tau_{\beta} \forall \beta$. It follows $\tau_{S} \subseteq \bigcap_{\beta} \tau_{\beta}$.

(c)

 (\rightarrow) Fix α . Take U_{α} open in X_{α} . Then $f_{\alpha}^{-1}(U_{\alpha})$ is open in A relative to topology $\mathbf{\tau}$. By hypothesis $g^{-1}(f_{\alpha}^{-1}(U_{\alpha})) = (f_{\alpha} \circ g)^{-1}(U_{\alpha})$ is open in Y.

 (\leftarrow) Consider a basis element B in A. Relative to topology \mathbf{T} , we know $B = f_{\alpha_1}^{-1}(U_{\alpha_1}) \cap f_{\alpha_2}^{-1}(U_{\alpha_2}) \cap \cdots \cap f_{\alpha_k}^{-1}(U_{\alpha_k})$. For $i = 1, \ldots, k$, since U_{α_i} is open in X_{α_i} , by hypothesis we have $(f_{\alpha_i} \circ g)^{-1}(U_{\alpha_i}) = g^{-1}(g_{\alpha}^{-1}(U_{\alpha}))$ is open.

By topology's axioms, $g^{-1}(f_{\alpha_1}^{-1}(U_{\alpha_1})) \cap \cdots \cap g^{-1}(f_{\alpha_k}^{-1}(U_{\alpha_k}))$ is open. Since g is a welldefined function, uniquely assigning elements, g^{-1} is injective. It follows

$$g^{-1}(f_{\alpha_1}^{-1}(U_{\alpha_1})) \cap \dots \cap g^{-1}(f_{\alpha_k}^{-1}(U_{\alpha_k})) = g^{-1}(f_{\alpha_1}^{-1}(U_{\alpha_1}) \cap \dots \cap f_{\alpha_k}^{-1}(U_{\alpha_k}))$$

(d)

Proposition. If function $f : X \to Y$ maps each basis element B of X to a basis element B' of Y, then f(U) is open in Y for every open U in X.

Lemma. For a fixed α , the image of $f_{\alpha}^{-1}(U_{\alpha})$ in \mathbf{T} , is a basis element of \mathbf{T}_{Z} .

Observe the basis of \mathbf{T}_Z is $\{\prod_{\alpha} U_{\alpha} \cap Z \mid \text{all are } X_{\alpha} \text{ except finitely } U_{\alpha} \text{ are open}\}.$

Fix α and consider $f_{\alpha}^{-1}(U_{\alpha})$ in \mathbf{T} . Accordingly, consider $\prod_{\beta} U_{\beta} \cap Z$ where $U_{\beta} = X_{\beta}$ for $\beta \neq \alpha$. Note it is a basis element of \mathbf{T}_{Z} .

We claim $f(f_{\alpha}^{-1}(U_{\alpha})) = \prod_{\beta} U_{\beta} \cap Z.$

 $(\rightarrow) f_{\alpha}(x) \in U_{\alpha} \text{ for } x \in f_{\alpha}^{-1}(U_{\alpha}).$

(\leftarrow) For arbitrary y in the R.H.S, it has at index α an element in U_{α} . So y = f(x) where $x \in f^{-1}(U_{\alpha})$.

Corollary. The image of a basis element of A is a basis element of τ_Z .

Following the same line of reasoning it can be shown a finite intersection $f_{\alpha}^{-1}(U_{\alpha}) \cap \cdots \cap f_{\alpha}^{-1}(U_{\alpha})$ is a basis element of \mathbf{T}_{Z} .

Theorem. Main problem.

Follows by the *corollary* alongside the *proposition*.