Homework 08

Mostafa Touny

May 26, 2025

Contents

Section 26
1
2 (b)
$5 \dots \dots$
8
Section 27
3 (a)
Section 28
2
3
4

Section 26

1

(a). If X is compact under τ' then it is compact under τ .

Take open covering of τ . Then by hypothesis it is in τ' , and hence there is a finite covering subcollection.

(b). We show $\tau' \supset \tau$ implies $\tau \subset \tau'$.

Take arbitrary $U \in \mathbf{T}'$. Then X - U is closed under \mathbf{T}' . By theorem 26.2, X - U is compact under \mathbf{T}' . By (a), X - U is compact under \mathbf{T} . By theorem 26.3, X - U is closed under \mathbf{T} , concluding U is open under \mathbf{T} .

2 (b)

Not compact.

Consider open sets $U_k = \mathbb{R} - \{1/i \mid i \geq k\}$. Clearly for any 1/i, there is a k such that $U_k \ni 1/i$. Hence $\bigcup_k U_k$ covers [0, 1]. However, if we took any finite sub-collection, then by considering the maximum index k of them, we know 1/k is in [0, 1] but not in the unions of that subcollection.

$\mathbf{5}$

By Lemma 26.4, for each $y \in B$, we can take disjoint $U_y \ni y$ and $V_y \supset A$. Then $\bigcup_y U_y$ covers B and by its compactness, we take finite sub-collection U_1, \ldots, U_m . Set

$$U = U_1 \cup \dots \cup U_m$$
$$V = V_1 \cap \dots \cap V_m$$

Observe open $U \supset B$ and open $V \supset A$. Since $U_i \cap V_i = \phi$, it follows $U \cap V = \phi$.

8

 (\leftarrow) Take open neighbourhood V of $f(x_0)$. Note if V has no such point, then $f^{-1}(V) = \phi$ open in X. By definition Y - V is closed. It follows $X \times (Y - V)$ is closed in $X \times Y$ and $G_f \cap X \times (Y - V)$ is closed. Applying *exercise* 7, the set $\{x \mid f(x) \in Y - V\}$ is closed, implying the complement $\{x \mid f(x) \in V\} = f^{-1}(V)$ is open.

 (\rightarrow) Unsolved.

Section 27

3 (a)

Observe the following are open in [0, 1] as a subspace.

- $((-1,2)-K) \cap [0,1] = [0,1]-K.$
- $\forall a > 0, (a, 2) \cap [0, 1] = (a, 1].$

Observe these sets constitute an open cover of [0, 1] as a subspace. If we took any finite subcollection, then either we miss 0 or we miss some 1/n.

Section 28

$\mathbf{2}$

Consider the infinite set $A = \{1 - 1/n \mid n \in \mathbb{N}^*\}$. Consider any $x \in [0, 1] - A$.

- Case x = 1. Then $[1, 2) \cap [0, 1] = \{1\}$ is open in [0, 1] as a subspace, yet does not intersect A.
- Case 0 < x < 1. Then $1/n_1 < x < 1/n_0$ for a smallest n_1 and a biggest n_0 . Take [x, b) where $b < 1/n_0$, which is open in [0, 1] as a subspace, yet does not intersect A.

Thereby, infinite set A does not contain any limit point in [0, 1] as a subspace.

3

(a). Yes. Consider an infinite set A in f(X). for each $f(x) \in f(X)$, choose a single point $f^{-1}(x)$ in X, and construct set A^{-1} . Since f is a function, A^{-1} is infinite in X. Observe f restricted to A^{-1} is injective.

By hypothesis, there is a limit point x in A^{-1} . We claim f(x) is a limit point in A. For any neighbourhood $U \ni f(x)$, and since f is continuous, $f^{-1}(U)$ is open in X. Hence some $x' \in A^{-1} \cap f^{-1}(U)$ where $x' \neq x$. It follows $f(x') \in A \cap U$ where $f(x') \neq f(x)$ by injectivity.

(b). Yes. Consider an infinite set $B \subseteq A$. By hypothesis, there is a limit point x in B with respect to X as a space. We claim x is a limit point in B with respect to A as a subspace. For open $U \ni x$ in A, we know $U = U' \cap A$ for open U' in X. It follows some $x' \in U' \cap A$ where $x' \neq x$, implying $x' \in U$.

4

Partially Solved.

 (\leftarrow) We prove if X is not countably compact, then it is not limit point compact.

By hypothesis, there is a countable cover $\{U_n\}$, which has no finite sub-cover. Take $x_n \notin U_1 \cup \cdots \cup U_n$ for each n. If those $\{x_n\}$ are finite then we can take some x_m such that $x_m \notin \bigcup_n U_n$, concluding $\{x_n\}$ is infinite.

If $\{x_n\}$ has a limit point y, then call open $U_k \ni y$ where $U_k \in \{U_n\}$. Since X is T_1 it follows U_k contains infinitely many points of $\{x_n\}$. But by definition $\forall n \ge k, x_n \notin U_k$, implying U_k contains finitely many points of $\{x_n\}$.