Homework 09

Mostafa Touny

May 26, 2025

Contents

Section	1	23	8																																2
1 .																																			2
4 .			•	•				•	•		•		•			•	•	•	•	•	•	•		•	•			•							2
5 .			•	•				•	•		•		•			•	•	•	•	•	•	•	•	•	•			•							2
8.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
Section	1	24	Ŀ																																3
3.			•					•								•	•	•	•	•	•	•		•	•			•							3
8.																																			3
11			•	•				•	•		•		•			•	•	•	•	•	•	•		•	•										3

Section 23

1

Assume X is connected with respects to τ' . Clearly, if there is a separation in τ , so would it exist in τ' . Thereby X is connected with respects to τ .

On the other hand, X is connected in $\mathbf{\tau} = \{\phi, X\}$, but for other topologies $\mathbf{\tau}'$, it may not be connected.

$\mathbf{4}$

We use the fact X is connected iff the only open subsets are ϕ and X.

Let U be both open and closed. Then either X - U finite or $U = \phi$ (1). Moreover, X - U is open. Then either X - (X - U) = U is finite or U = X (2).

Assume towards contradiction U is neither ϕ nor X. Then by (1) and (2), we get both X - U and U are finite, implying X is finite. Contradiction.

$\mathbf{5}$

If we took subspace $B = \phi$, which is not a one-point set, then it is trivially connected.

We show for any subspace B where $|B| \ge 2$, it is not connected. Take $b_1 \in B$, and set $C = \{b_1\}$ and D = B - C. Clearly both are non-empty open sets in B as a subspace, hence constitute a separation.

The converse holds if X is finite. For fixed $x \in X$, we have open U_y containing x but not y for every $y \in X - \{x\}$. Finite intersection $\bigcap_y U_y = \{x\}$ is open. Since all singletons are open, X has the discrete topology, by taking arbitrary unions.

I guess the converse does not hold in general.

8

Not connected. We extend example 6 in Munkres but for the uniform topology. Recall in any metric, including the uniform metric, ϵ -balls for $\epsilon < 1$ are open. Take A to be the set of bounded sequences and B the set of unbounded sequences. They are disjoint. For any $x \in A$, we have an open ball $B(x, 1) \subset A$. Similarly for any $x \in B$.

Section 24