
Problem Set 02

Mostafa Touny

Contents
Exercises 2

Ex. 2-1 . 2
Ex. 2-2 . 2
Ex. 2-3 . 4
Ex. 2-4 . 4
Ex. 2-5 . 4
Ex. 3-2 . 6

Problems 7
Problem 2-1 . 7

a . 7
b . 8
c . 8
d . 8

Problem 2-2 . 8
a . 8
b . 9
c . 9
d . 9

1

Exercises
Ex. 2-1
done

Ex. 2-2
For our own convenience of avoiding tedious computations, we multiply A(x) = −10 + x with B(x) =
3 − 6x.

Double-degree form

A(x) = −10 + x + 0x2 + 0x3

B(x) = 3 − 6x + 0x2 + 0x3

Computing A(x) on sample

Recursive-FFT(-10, 1, 0, 0)
n = 4
w_4 = e^{2 pi i / 4}
w = w_4^0 = 1
a[even] = (-10, 0)
a[odd] = (1, 0)
y[even] = Recursive-FFT(-10, 0) = (-10, -10)
y[odd] = Recursive-FFT(1, 0) = (1, 1)
for k=0 to 1

k=0
y_0 = (-10) + (1)(1) = -9
y_2 = (-10) - (1)(1) = -11
w = w_4^1

k=1
y_1 = (-10) + (e^{1 2 pi i / 4})(1) = -10+i
y_3 = (-10) - (e^{1 2 pi i / 4})(1) = -10-i
w = w_4^2

return (-9, -10+i, -11, -10-i)

Recursive-FFT(-10, 0)
n = 2
w_2 = e^{2 pi i / 2}
w = w_2^0 = 1
a[even] = (-10)
a[odd] = (0)
y[even] = Recursive-FFT(-10) = (-10) // base case
y[odd] = Recursive-FFT(0) = (0)
for k=0 to 0

k=0
y_0 = (-10) + w (0) = -10
y_1 = (-10) - w (0) = -10
w = w_2^1

return (-10, -10)

Recursive-FFT(1, 0)
n = 2
w_2 = e^{2 pi i / 2}

2

w = w_2^0 = 1
a[even] = (1)
a[odd] = (0)
y[even] = Recursive-FFT(1) = (1) // base case
y[odd] = Recursive-FFT(0) = (0)
for k=0 to 0

k=0
y_0 = 1 + w(0) = 1
y_1 = 1 - w(0) = 1
w = w_2^1

return (1, 1)

Computing B(x) on sample

Similarly, we get y = (−3, 3 − 6i, 9, 3 + 6i)

Computing C(x) on sample, By multiplying corresponding sample points of A and B

y = ((−9)(−3), (−10 + i)(3 − 6i), (−11)(9), (−10 − i)(3 + 6i)) = (27, −24 + 63i, −99, −24 − 63i)

Interpolating C(x) coefficients

Recursive-IFFT(27, -24+63i, -99, -24-63i)
n = 4
w_4^-1 = e^{-1 i 2 pi / 4}
w = w_4^0 = 1
y[even] = (27, -99)
y[odd] = (-24+63i, -24-63i)
a[even] = Recursive-IFFT(27, -99) = (-72, 126)
a[odd] = Recursive-IFFT(-24+63i, -24-63i) = (-48, 126i)
for k=0 to 1

k=0
y_0 = (-72) + (1)(-48) = -120
y_2 = (-72) - (1)(-48) = -24
w = w_4^-1

k=1
y_1 = (126) + (e^{-1 i 2 pi / 4})(126i) = 252
y_3 = (126) - (e^{-1 i 2 pi / 4})(126i) = 0
w = w_4^-2

return (-120, 252, -24, 0)

Recursive-IFFT(27, -99)
n = 2
w_2^-1 = e^{-1 i 2 pi / 2}
w = w_2^0 = 1
y[even] = (27)
y[odd] (-99)
a[even] = Recursive-IFFT(27) = (27) // base case
a[odd] = Recursive-IFFT(-99) = (-99)
for k=0 to 0

k=0
y_0 = 27 + (1)(-99) = -72
y_1 = 27 - (1)(-99) = 126
w = w_2^-1

3

return (-72, 126)

Recursive-IFFT(-24+63i, -24-63i)
n = 2
w_2^-1 = e^{-1 i 2 pi /2}
w = w_2^0 = 1
y[even] = (-24+63i)
y[odd] = (-24-63i)
a[even] = Recursive-IFFT(-24+63i) = (-24+63i)
a[odd] = Recursive-IFFT(-24-63i) = (-24-63i)
for k=0 to 0

k=0
y_0 = (-24+63i) + (1)(-24-63i) = -48
y_1 = (-24+63i) - (1)(-24-63i) = 126i

return (-48, 126i)

Hence, Final answer is (-120, 252, -24, 0)/4 = (-30, 63, -6, 0), and resulting polynomial is C(x) =
−30 + 63x − 6x2.

Ex. 2-3
Modifying Recursive-FFT, by switching a and y, replacing wn by w−1

n . Finally, result vector is divided
by n.

Recursive-IFFT(y)
n = y.length
if n == 1

return y
w_n^-1 = e^{-1 2 pi i / n}
w = 1
y[even] = (y_0, y_2, ..., y_n-2})
y[odd] = (y_1, y_3, ..., y_n-1)
a[even] = Recursive-IFFT(y[even])
a[odd] = Recursive-IFFT(y[odd])
for k=0 to n/2 - 1

a_k = a[even]_k + w a[odd]_k
a_k+(n/2) = a[even]_k - w a[odd]_k
w = w w_n^-1

return a

a = a/n

Ex. 2-4
done

Ex. 2-5
Create operation accounts for number of pointers filled. Insert operations are modified to allow up
to 2t − 1 keys in case of internal node, and up to (2t − 1) + (2t) = 4t − 1 keys in case of leaf node.
That, by basically modifying the if condition. Also, insertion in place of pointers happens by checking
whether a leaf have 2t − 1 keys.

4

Note we haven’t rigorously proven our modification is correct; We rely on our intuition to write main
parts of new the operations.

B-TREE-CREATE(T)
x = ALLOCATE-NODE()
x.leaf = TRUE
x.n = 0
x.n' = 0 // number of pointers to children filled
DISK-WRITE(x)
T.root = x

B-TREE-INSERT(T,k)
r = T.root
if (r.n == 2t-1 and not r.leaf) or (r.n == 4t-1 and r.leaf) // different cases for internal and leaf nodes

s = ALLOCATE-NODE()
T.root = s
s.leaf = FALSE
s.n = 0
s.c1 = r
B-TREE-SPLIT-CHILD(s,1)
B-TREE-INSERT-NONFULL(s,k)

else
B-TREE-INSERT-NONFULL(r,k)

B-TREE-INSERT-NONFULL(x,k)
if x.leaf

i = x.n + x.n' // sum of both keys and pointers

while i >= x.n + 1 and k < x.c_(i-x.n)
x.c_(i-x.n+1) = x.c_(i-x.n)
i = i-1

while i >= 1 and k < x.key_i
x.key_i+1 = x.key_i
i = i-1

if i >= x.n + 1
x.c_i+1 = k
x.n' = x.n' + 1

else
x.key_i+1 = k
x.n = x.n + 1

DISK-WRITE(x)

else
i = x.n

while i>=1 and k<x.key_i
i = i-1

i = i+1

DISK-READ(x,c_i)

5

if (x.c_i).n == 2t-1 // note this is an internal node
B-TREE-SPLIT-CHILD(x,i)
if k > x.key_i

i = i+1

B-TREE-INSERT-NONFULL(x.c_i, k)

Ex. 3-2
We implement the prescription described in p.500.

Note we haven’t rigorously proven our modification is correct; We rely on our intuition to write main
parts of new the operations.

B-TREE-DELETE(x, k)
// check if k is in node x
i = x.n
while i>=1 and x.key_i != k

i = i-1

// k is found
if i>=1

// x is a leaf node
if x.leaf

key_i = NULL
x.n = x.n - 1
x.shiftKeysAndPointers() // for brevity we ignore implementing this subroutine

// x is an internal node
else

y = x.c_i // child preceeding k
z = x.c_i+1 // child following k

// number of keys in child preceeding k is at least t
if y.n >= t

k' = y.lastKey() // implementation is ignored
B-TREE-DELETE(y, k')
key_i = k = k'

// number of keys in child following k is at least t
else if z.n >= t

// symmetrically replace k by k'

// number of keys in both child following and preceeding k, is less than t
else

mergeInto([y, k, z]) // merge k and z into y. implementation is ignored
x.c_i+1 = NULL
B-TREE-DELETE(k)

// k isn't found in x
else

6

// find k in children
i = x.n
while i >= 1 and k < x.key_i

i = i-1
y = x.c_(i+1) // subtree y containing k

// guarantee we descend to a node containing at least t keys
if y.n == t-1

if i+2 <= x.n
z = x.c_(i+2) // immediate forward sibling of y

if i >= 1
r = x.c_(i) // immediate preceeding sibling of y

// some sibling contains at least t keys
if z and z.n >= t

B-TREE-INSERT(y, key_i)
B-TREE-DELETE(key_i)
B-TREE-INSERT(x, z.firstKey())
B-TREE-DELETE(z, z.firstKey())
// don't get why a pointer from sibling should be moved to y

else if r and r.n >= t
// symmetrically

// both immediate siblings have t-1 keys
else

mergeInto([r, key_i, y])
x.c_(i+1) = NULL
B-TREE-DELETE(x, key_i)

// remove k from child y
B-TREE-DELETE(y, k)

Problems
Problem 2-1
a

Match(S, P)
n = S.length
m = P.length

M = []

for i = 0..n-m+1
flag = true
for j = 0..m

if P[j] != S[i+j] flag = false
if flag M.append(i)

return M

7

b

Source string S gets encoded as S(x) = s0x0 + s1x1 + · · · + sn−1xn−1, and pattern string P as
P (x) = p0xm−1 + p1xm−2 + · · · + pm−1x0, where si and pi are, 1 or −1, if characters S[i] and P [i], are
a or b, respectively. If P [i] = ∗, Then pi = 0.

Observe sjpk = 1 if S[j] = P [k], sjpk = −1 if S[j] ̸= P [k], and sjpk = 0 if P [k] = ∗. Observe for
resulting polynomial (s · p)(x) = r0x0 + r1x1 + · · · + rm+n−2xm+n−2, Coefficient ri =

∑
j+k=i sjpk,

Exactly matches the sum of multiplying si−m+1, si−m+2, . . ., si−1, si with p0, p1, . . ., pm−1, respectively,
for i = m − 1, m, . . . , n − 1. If and only if, All corresponding alphabetic characters are equal, Then
each contributes to the sum by +1. Asterik ∗ always contributes nothing to the sum. Therefore, if k is
the number of alphabetic character in P (non asterik characters), Then ri = k if and only if P matches
substring S[i − m + 1..i].

Now we can set output M to be the ordered list of i such that ri = k, Then subtract each entry by
m − 1, so that i matches the position of the first character of the substring.

Note coefficients r0, r1, . . ., rm−2 are irrelevant to our consideration, Since they do not consider a
matching with the whole characters of pattern string P .

For the example, S = ababbab and P = ab∗,

S(x) = (1)x0 + (−1)x1 + (1)x2 + (−1)x3 + (−1)x4 + (1)x5 + (−1)x6

P (x) = (1)x2 + (−1)x1 + (0)x0

(S · P)(x) = (−1)x1 + (x)x2 + (−2)x3 + (2)x4 + (1)x7 + (−1)x8

M = [2, 4]
M = [2 − (m − 1), 4 − (m − 1)] = [2 − (3 − 1), 4 − (3 − 1)]
M = [0, 2]

c

O(n lg n), Since each operation of my algorithm requires at most a linear scan of complexity O(n)

d

Exactly as b, but characters are encoded as

A C G T *
S 1 -1 i -i
P 1 -1 -i i 0

Note if characters are matching, Then as before, each contributes to the sum by +1. In case of
non-matching, A number less than +1 or an imaginary number is contributed.

Problem 2-2
a

Merge roots of T1 and T2, placing k in between them. If new root’s keys are greater than 2t − 1, Apply
the standard operation of split and push median up.

Note roots of T1 and T2, each has at most 2t − 1 keys. When merging the new root is at most
(2t − 1) + (2t − 1) + 1 = 4t − 1. If we spllitted, We get a new root of key size exactly 1 and two childs,
Each is of size at most 2t − 1.

8

b

Modify T1 to decrease its height by one, Then apply the same procedure of a. That, by merging all of
T1’s children into its root. In other words, Merge(x.c0, key0, x.c1, key1, . . . , x.cn−1, keyn−1, x.cn). Note
new root of T1 has at most (2t − 1) + (2t)(2t − 1) = (2t + 1)(2t − 1) = 4t2 − 1 keys.

As in a, Merge T1, k, and T2. The new root has at most (4t2 − 1) + (2t − 1) + 1 = (2t + 2)(2t − 1) + 1 =
4t2 + 2t − 1 keys. Hence we are going to split around O(lg t2) = O(lg t) times. Note that shall result in
many one-key nodes. So, at most O(lg t) merge of one-key nodes, to finally fix the tree. But since t is
assumed to be a constant, the total complexity is O(1).

c

The tree’s height is increased only when the root has a full capacity of keys, and a new root is allocated.

B-TREE-INSERT(T,k)
r = T.root
if r.n == 2t-1

s = ALLOCATE-NODE()
T.root = s
s.leaf = FALSE
s.n = 0
s.c1 = r
s.height = r.height+1 // new root is of height +1 than the previous one
B-TREE-SPLIT-CHILD(s,1)
B-TREE-INSERT-NONFULL(s,k)

else
B-TREE-INSERT-NONFULL(r,k)

Tree shrinks only when a merge happens with the root alongside its children. If we assumed the new
root is updated to point to one of the children, Then no height variable needs to be updated.

d

Without the loss of generality assume h1 ≥ h2. Then the procedure of b is applied h1 − h2 times so T1
and T2 have the same weight. Then the procedure of a is applied to combine them. Each operation
costs a constant time, Hence a complexity upperbounded by O((h1 − h2) + 1).

9

	Exercises
	Ex. 2-1
	Ex. 2-2
	Ex. 2-3
	Ex. 2-4
	Ex. 2-5
	Ex. 3-2

	Problems
	Problem 2-1
	a
	b
	c
	d

	Problem 2-2
	a
	b
	c
	d

