Problem Set 04

Mostafa Touny

Contents

2
2
2
2
2
3
3
3
3
3
3
4
4
5
5
5
5
6
6
6

Exercises

Ex. 1

done

Ex. 2

The amortized cost of n operations is upper-bounded by

$$n + \sum_{i=1}^{\lfloor \lg n \rfloor} 2^i$$
$$= n + \frac{2(1 - 2^{\lfloor \lg n \rfloor})}{1 - 2}$$
$$\leq n + \frac{2(1 - n)}{-1}$$
$$= n - 2 + 2n$$
$$= 3n - 2$$
$$= \mathcal{O}(n)$$

So the amortized cost of one operation is $\frac{\mathcal{O}(n)}{n} = \mathcal{O}(1)$.

Ex. 3

We assign the following amortized costs:

- ith operation isn't a power of $2 \rightarrow 4$
- ith operation is an exact power of $2 \rightarrow 0$

We prove for each operation 2^i , There's a sufficient balance for it. For $i \ge 2$, There are exactly $2^{i-1} - 1$ non-power operations before 2^i and after 2^{i-1} . It sufficies to show $4(2^{i-1}-1) \ge 2^i$ which can trivially be proven by induction.

Observe amortized cost = $4n - 4\lfloor \lg n \rfloor \ge n - \lfloor \lg n \rfloor + 2n \ge n - \lfloor \lg n \rfloor + \sum_{i=1}^{\lfloor \lg n \rfloor} 2^i =$ actual cost. Note by the geometric series $\sum_{i=1}^{\lfloor \lg n \rfloor} 2^i = \frac{2(1 - 2^{\lfloor \lg n \rfloor})}{1 - 2} \le 2n$

The amortized cost of n operations is $\mathcal{O}(n)$, and hence the amortzed cost of one operation is $\mathcal{O}(1)$.

Ex. 4

Define potential function $\Phi(D_i)$ to be the number of 1-bits in the binary representation of i. Note $\Phi(D_0) = 0$ and $\Phi(D_i) \ge 0$ which suffices to show the validity of our definition. Observe the amortized cost of operations:

$$c'_{i} = \left\{ \begin{array}{ll} i+1-i=1, & \text{i is a power of } 2\\ 1+1=2, & \text{if i is odd}\\ 1+\Delta\Phi(D_{i}) \leq 1, & \text{if i is even but not power of } 2 \end{array} \right\}$$
(1)

When i is odd, it has one additional 1-bit over even i-1, due to the right most bit being only flipped from 0 to 1. When i is even, then i-1 is odd, and at least one 1-bit is flipped to zero and at most one 0-bit is flipped to 1. So $\Delta \Phi(D_i) \leq 0$. When $i = 2^k$, a power of two, then $\Phi(D_i) = 1$ because there's exactly one 1-bit. Also, i-1 contains exactly i 1-bits, So $\Phi(D_{i-1}) = i$.

In all cases, the amortized cost of a single operation is $\mathcal{O}(1)$.

Ex. 5

done

Ex. 6

Each element of the array needs to be compared with the *pivot* only once to conclude whether it is greater or less than it.

Ex. 7

Since $0 < \alpha \leq \frac{1}{2}$ branching $1 - \alpha$ is greater or equal than branching α . Maximum depth is $\lg_{\frac{1}{1-\alpha}} n = \frac{\lg n}{\lg \frac{1}{1-\alpha}} = \frac{\lg n}{\lg 1 - \lg(1-\alpha)}$ and minimum depth is $\lg_{\frac{1}{\alpha}} n = \frac{\lg n}{\lg \frac{1}{\alpha}} = \frac{\lg n}{\lg 1 - \lg \alpha}$. The fact $\lg 1 = 0$ concludes the intended result.

Ex. 8

Failed to solve.

Through the same reasoning of establishing upper-bound, we derived a lower-bound of $\Omega(\lg n)$.

Problems

Prob. 1

The obvious FIFO queue satisfies the problem's requirements. Think of a list of numbers where integers are *enqueued* to left and *dequeued* from right.

A *list.min* variable is maintained whenever a new integer is added, Checking whether it's less than *list.min* and updating accordingly. Whenever *dequeue* is called, we check whether removed integer is equal to *list.min*. If not, no additional work is done. If yes, we know by the distinctness of integers, that the *list.min* is removed from the list, and hence it must be updated. A linear scan is implemented to update *list.min*.

While the worst-case analysis of *dequeue* is linear, That worst case of removing the *list.min* happens in proportion to the number of integers enqueued, which in turn allows us to conclude an amortized cost of $\mathcal{O}(1)$.

The central key idea is to loop only once on each element, from left to right, storing in each *element.min*, The minimum integer of the sub-array starting from left-most to current element's position. Now whenever we need to loop again to find *list.min*, We do not loop on already-visited elements, but only on newly inserted elements. We assign *list.min* to be the minimum integer of that new sub-array. Observe we can conclude the minimum of the whole list, from *list.min* and right-most *element.min* stored in visited elements. It's basically *min(list.min, element.min)*.

We continue in this manner untill all visited elements are dequeued. Then we are left with a list of totally no visited elements, and *list.min* is the minimum integer of the whole list.

 \mathbf{a}

- **element** contains *int* holding the integer value and *min* storing the minimum element of a sub-array.
- **list** contains *min* indicating the minimum integer of the unstamped sub-array. That, besides *elements* aforementioned.

 \mathbf{b}

- **minAllElements** Loop from left to right on the whole list, Maintaining the minimum of the sub-array from left-most to currently visiting element, and storing it in each *element.min*. Reset *list.min* to $+\infty$ so that it considers only newly inserted elements.
- **Enqueue** Append element to the left of the list. If it's less than *list.min*, Update *list.min* to it.
- Find-Min
 - (1) No element is visited in a *minAllElements* call before.
 * return *list.min*.
 - (2) Some elements are visited in a *minAllElements* call before.
 * return *min(list.min, element.min)*, where the element here is the right-most one.
- **Dequeue** Assign *localMin=Find-Min()*, and remove the element. For case (1), if removed element is equal to *localMin*, *minAllElements* is called.

С

We skip a proof by invariance is it seems unnecessarily. We believe our discussion suffices to convince the reader our design covers all cases.

\mathbf{d}

Trivially, Enqueue and Find-Min are $\mathcal{O}(1)$, and minAllElements is $\theta(n)$. Dequeue's worst-case is $\theta(n)$ due to the call of minAllElements. So, m operations are upper-bounded by $\omega(m^2)$.

The goal now, by the *accounting* method, is to show we can pay *minAllElements* by an amortized cost of 2 for *Enqueue*. Note we cannot visit an element unless it's enqueued. We already discussed each element is going to be visited by *minAllElements* at most once, Hence the additional credit for each element accommodates the payment.

Now we have all desired operations to have an amortized cost of $\mathcal{O}(1)$, and a sequence of m operations costs $\mathcal{O}(m)$.

Prob. 2

a

The event is logically equivalent to, assuming x_i is not the pivot the next recursive call containing x_i has a subarray of size at most 3m/4.

Consider the array's elements ordered as $q_1 < q_2 < \cdots < q_m$. There are three cases for which the event occurs:

- (i) The pivot z ∈ {[m/4],..., [3m/4] + 1}. Then x_i is always in a subarray of size at most 3m/4.
- (ii) $z \in \{1, \ldots, \lceil m/4 \rceil 1\}$, and x_i is in the left subarray.
- (iii) $z \in \{\lfloor 3m/4 \rfloor + 2, \ldots, m\}$, and x_i is in the right subarray.

We ignore (ii) and (iii) and prove (i) concludes the desired lower-bound of probability 1/2.

Since the pivot is randomly selected, we know the probability of q_i being the pivot is 1/m. There are exactly $\lfloor 3m/4 \rfloor + 1 - \lceil m/4 \rceil + 1$ elements. So the probability is:

$$\geq \frac{1}{m} \left(\left\lfloor \frac{3m}{4} \right\rfloor + 1 - \left\lceil \frac{m}{4} \right\rceil + 1 \right)$$
$$\geq \frac{1}{m} \left(\frac{3m}{4} - \frac{m}{4} \right)$$
$$= \frac{1}{m} \cdot \frac{m}{2} = \frac{1}{2}$$

h
J

Assume the algorithm lasted for iteration $3(2 + \frac{1}{\log_2 4/3}) \log_2 n = 3(\alpha + c) \log_2 n$. By the instructor's claim and exercise a, We know the array size is reduced by a factor of at most 3m/4 for at least $\frac{1}{\log_2 4/3} \log_2 n = \log_{4/3} n$ times. Thus the array size is at most $\frac{n}{(4/3)^{\log_4/3}n} = 1$ and the algorithm terminates. Therefore with probability at least $1 - \frac{1}{n^2}$, The number of comparisons is logarithmic for $d \leq 3(2 + \frac{1}{\log_2 4/3})$.

С

Definition 1. Let k_i denote the event, that the total comparisons of x_i with pivots is at most $d \lg n$.

Lemma 2. $prob[\neg k_1 \lor \neg k_2 \lor \cdots \lor \neg k_n] \leq \frac{1}{n}$

Immediately follows by the fact $prob[\neg k_i] = \frac{1}{n^2}$ and the union bound. Note $\frac{1}{n^2} + \cdots + \frac{1}{n^2} = n \frac{1}{n^2} = \frac{1}{n}$

Corollary 3. $prob[k_1 \wedge \cdots \wedge k_n] \ge 1 - \frac{1}{n}$

The event is the logical negation of the event in **lemma 2**. Hence $prob[k_1 \wedge \cdots \wedge k_n] = 1 - prob[\neg k_1 \vee \neg k_2 \vee \cdots \vee \neg k_n] \ge 1 - \frac{1}{n}$.

d

The procedure of c yields probability $1 - \frac{1}{n^{\alpha-1}} = 1 - \frac{1}{n^1}$ from $\alpha = 2$ in b. But the procedure of b is general enough, So we can select any α instead of just $\alpha = 2$. In other words, For any α we can set $\alpha + 1$ in b and get the desired probability bound.