Problem Set 04

Mostafa Touny

Contents

Exercises 2
Ex. 1 2
Ex. 2 2
Ex. 3 2
Ex. 4 2
Ex. 5 3
Ex. 6 3
Ex. 7 3
Ex. 8 3
Problems 3
Prob. 1 3
a 4
b 4
c 5
d 5
Prob. 2 5
a 5
b 6
c 6
d 6

Exercises

Ex. 1

done

Ex. 2

The amortized cost of n operations is upper-bounded by

$$
\begin{aligned}
& n+\sum_{i=1}^{\lfloor\lg n\rfloor} 2^{i} \\
& =n+\frac{2\left(1-2^{\lfloor\lg n\rfloor}\right)}{1-2} \\
& \leq n+\frac{2(1-n)}{-1} \\
& =n-2+2 n \\
& =3 n-2 \\
& =\mathcal{O}(n)
\end{aligned}
$$

So the amortized cost of one operation is $\frac{\mathcal{O}(n)}{n}=\mathcal{O}(1)$.

Ex. 3

We assign the following amortized costs:

- ith operation isn't a power of $2 \rightarrow 4$
- ith operation is an exact power of $2 \rightarrow 0$

We prove for each operation 2^{i}, There's a sufficient balance for it. For $i \geq 2$, There are exactly $2^{i-1}-1$ non-power operations before 2^{i} and after 2^{i-1}. It sufficies to show $4\left(2^{i-1}-1\right) \geq 2^{i}$ which can trivially be proven by induction.
Observe amortized cost $=4 n-4\lfloor\lg n\rfloor \geq n-\lfloor\lg n\rfloor+2 n \geq n-\lfloor\lg n\rfloor+\sum_{i=1}^{\lfloor\lg n\rfloor} 2^{i}=$ actual cost. Note by the geometric series $\sum_{i=1}^{\lfloor\lg n\rfloor} 2^{i}=\frac{2\left(1-2^{\lfloor\lg n\rfloor}\right)}{1-2} \leq 2 n$
The amortized cost of n operations is $\mathcal{O}(n)$, and hence the amortzed cost of one operation is $\mathcal{O}(1)$.

Ex. 4

Define potential function $\Phi\left(D_{i}\right)$ to be the number of 1-bits in the binary representation of i. Note $\Phi\left(D_{0}\right)=0$ and $\Phi\left(D_{i}\right) \geq 0$ which suffices to show the validity of our definition.

Observe the amortized cost of operations:

$$
c_{i}^{\prime}=\left\{\begin{array}{lr}
i+1-i=1, & \mathrm{i} \text { is a power of } 2 \tag{1}\\
1+1=2, & \text { if } \mathrm{i} \text { is odd } \\
1+\Delta \Phi\left(D_{i}\right) \leq 1, & \text { if } \mathrm{i} \text { is even but not power of } 2
\end{array}\right\}
$$

When i is odd, it has one additional 1-bit over even i-1, due to the right most bit being only flipped from 0 to 1 . When i is even, then $\mathrm{i}-1$ is odd, and at least one 1-bit is flipped to zero and at most one 0 -bit is flipped to 1 . So $\Delta \Phi\left(D_{i}\right) \leq 0$. When $i=2^{k}$, a power of two, then $\Phi\left(D_{i}\right)=1$ because there's exactly one 1-bit. Also, i-1 contains exactly i 1-bits, So $\Phi\left(D_{i-1}\right)=i$.
In all cases, the amortized cost of a single operation is $\mathcal{O}(1)$.

Ex. 5

done

Ex. 6

Each element of the array needs to be compared with the pivot only once to conclude whether it is greater or less than it.

Ex. 7

Since $0<\alpha \leq \frac{1}{2}$ branching $1-\alpha$ is greater or equal than branching α. Maximum depth is $\lg \frac{1}{1-\alpha} n=\frac{\lg n}{\lg \frac{1}{1-\alpha}}=\frac{\lg n}{\lg 1-\lg (1-\alpha)}$ and minimum depth is $\lg _{\frac{1}{\alpha}} n=\frac{\lg n}{\lg \frac{1}{\alpha}}=$ $\frac{\lg n}{\lg 1-\lg \alpha}$. The fact $\lg 1=0$ concludes the intended result.

Ex. 8

Failed to solve.
Through the same reasoning of establishing upper-bound, we derived a lower-bound of $\Omega(\lg n)$.

Problems

Prob. 1

The obvious FIFO queue satisfies the problem's requirements. Think of a list of numbers where integers are enqueued to left and dequeued from right.

A list.min variable is maintained whenever a new integer is added, Checking whether it's less than list.min and updating accordingly. Whenever dequeue is called, we check whether removed integer is equal to list.min. If not, no additional work is done. If yes, we know by the distinctness of integers, that the list.min is removed from the list, and hence it must be updated. A linear scan is implemented to update list.min.

While the worst-case analysis of dequeue is linear, That worst case of removing the list.min happens in proportion to the number of integers enqueued, which in turn allows us to conclude an amortized cost of $\mathcal{O}(1)$.

The central key idea is to loop only once on each element, from left to right, storing in each element.min, The minimum integer of the sub-array starting from left-most to current element's position. Now whenever we need to loop again to find list.min, We do not loop on already-visited elements, but only on newly inserted elements. We assign list.min to be the minimum integer of that new sub-array. Observe we can conclude the minimum of the whole list, from list.min and right-most element.min stored in visited elements. It's basically $\min (l i s t . m i n, ~ e l e m e n t . m i n) . ~$

We continue in this manner untill all visited elements are dequeued. Then we are left with a list of totally no visited elements, and list.min is the minimum integer of the whole list.

a

- element contains int holding the integer value and min storing the minimum element of a sub-array.
- list contains min indicating the minimum integer of the unstamped sub-array. That, besides elements aforementioned.

b

- minAllElements Loop from left to right on the whole list, Maintaining the minimum of the sub-array from left-most to currently visiting element, and storing it in each element.min. Reset list.min to $+\infty$ so that it considers only newly inserted elements.
- Enqueue Append element to the left of the list. If it's less than list.min, Update list.min to it.
- Find-Min
- (1) No element is visited in a minAllElements call before.
* return list.min.
- (2) Some elements are visited in a minAllElements call before.
* return $\min ($ list.min, element.min), where the element here is the rightmost one.
- Dequeue Assign localMin=Find-Min(), and remove the element. For case (1), if removed element is equal to localMin, minAllElements is called.

C
We skip a proof by invariance is it seems unnecessarily. We believe our discussion suffices to convince the reader our design covers all cases.
d
Trivially, Enqueue and Find-Min are $\mathcal{O}(1)$, and minAllElements is $\theta(n)$. Dequeue's worst-case is $\theta(n)$ due to the call of minAllElements. So, m operations are upper-bounded by $\omega\left(m^{2}\right)$.

The goal now, by the accounting method, is to show we can pay minAllElements by an amortized cost of 2 for Enqueue. Note we cannot visit an element unless it's enqueued. We already discussed each element is going to be visited by minAllElements at most once, Hence the additional credit for each element accommodates the payment.

Now we have all desired operations to have an amortized cost of $\mathcal{O}(1)$, and a sequence of m operations costs $\mathcal{O}(m)$.

Prob. 2

a

The event is logically equivalent to, assuming x_{i} is not the pivot the next recursive call containing x_{i} has a subarray of size at most $3 \mathrm{~m} / 4$.

Consider the array's elements ordered as $q_{1}<q_{2}<\cdots<q_{m}$. There are three cases for which the event occurs:

- (i) The pivot $z \in\{\lceil m / 4\rceil, \ldots,\lfloor 3 m / 4\rfloor+1\}$. Then x_{i} is always in a subarray of size at most $3 \mathrm{~m} / 4$.
- (ii) $z \in\{1, \ldots,\lceil m / 4\rceil-1\}$, and x_{i} is in the left subarray.
- (iii) $z \in\{\lfloor 3 m / 4\rfloor+2, \ldots, m\}$, and x_{i} is in the right subarray.

We ignore (ii) and (iii) and prove (i) concludes the desired lower-bound of probability $1 / 2$.

Since the pivot is randomly selected, we know the probability of q_{i} being the pivot is $1 / m$. There are exactly $\lfloor 3 m / 4\rfloor+1-\lceil m / 4\rceil+1$ elements. So the probability is:

$$
\begin{aligned}
& \geq \frac{1}{m}\left(\left\lfloor\frac{3 m}{4}\right\rfloor+1-\left\lceil\frac{m}{4}\right\rceil+1\right) \\
& \geq \frac{1}{m}\left(\frac{3 m}{4}-\frac{m}{4}\right) \\
& =\frac{1}{m} \cdot \frac{m}{2}=\frac{1}{2}
\end{aligned}
$$

b

Assume the algorithm lasted for iteration $3\left(2+\frac{1}{\log _{2} 4 / 3}\right) \log _{2} n=3(\alpha+c) \log _{2} n$. By the instructor's claim and exercise a, We know the array size is reduced by a factor of at most $3 \mathrm{~m} / 4$ for at least $\frac{1}{\log _{2} 4 / 3} \log _{2} n=\log _{4 / 3} n$ times. Thus the array size is at most $\frac{n}{(4 / 3)^{\lg _{4 / 3} n}}=1$ and the algorithm terminates. Therefore with probability at least $1-\frac{1}{n^{2}}$, The number of comparisons is logarithmic for $d \leq 3\left(2+\frac{1}{\log _{2} 4 / 3}\right)$.
c
Definition 1. Let k_{i} denote the event, that the total comparisons of x_{i} with pivots is at most $d \lg n$.

Lemma 2. $\operatorname{prob}\left[\neg k_{1} \vee \neg k_{2} \vee \cdots \vee \neg k_{n}\right] \leq \frac{1}{n}$.
Immediately follows by the fact $\operatorname{prob}\left[\neg k_{i}\right]=\frac{1}{n^{2}}$ and the union bound. Note $\frac{1}{n^{2}}+\cdots+$ $\frac{1}{n^{2}}=n \frac{1}{n^{2}}=\frac{1}{n}$
Corollary 3. $\operatorname{prob}\left[k_{1} \wedge \cdots \wedge k_{n}\right] \geq 1-\frac{1}{n}$
The event is the logical negation of the event in lemma 2. Hence $\operatorname{prob}\left[k_{1} \wedge \cdots \wedge k_{n}\right]=$ $1-\operatorname{prob}\left[\neg k_{1} \vee \neg k_{2} \vee \cdots \vee \neg k_{n}\right] \geq 1-\frac{1}{n}$.
d
The procedure of c yields probability $1-\frac{1}{n^{\alpha-1}}=1-\frac{1}{n^{1}}$ from $\alpha=2$ in b. But the procedure of b is general enough, So we can select any α instead of just $\alpha=2$. In other words, For any α we can set $\alpha+1$ in b and get the desired probability bound.

