Problem-Set 06

Mostafa Touny

December 29, 2022

Contents

Exercises 2
Ex. 1 2
Ex. 2 2
Ex. 3 2
Ex. 4 2
Ex. 5 2
Ex. 6 3
Problems 3
Prob. 1 3
Prob. 2 5

Exercises

Ex. 1

skipped in hope of professionally read while solving the exercises, and well-gain from lectures.

Ex. 2

To definte shortest-path weight function δ, which satisfies the triangle inequality, enabling the second property of \bar{w}.

Ex. 3

For a cycle $c=v_{0}, v_{1}, \ldots, v_{k}=v_{0}$ we are given $w(c)=0$. It is natural to ignore the case $k=0$.

Recall the facts

1. $\bar{w}(u, v) \geq 0$
2. $\bar{w}(u, v)=w(u, v)+h(u)-h(v)$
3. $\bar{w}(p)=w(p)+h\left(v_{0}\right)-h\left(v_{k}\right)$ for path p

Lemma. $1 \Sigma \bar{w}\left(v_{i}, v_{i+1}\right)=0$

$$
\begin{aligned}
\bar{w}(c) & =w(c)+h\left(v_{0}\right)-h\left(v_{k}\right) \\
& =0+h\left(v_{0}\right)-h\left(v_{0}\right), \quad v_{0}=v_{k} \\
& =0
\end{aligned}
$$

If any $\bar{w}\left(v_{i}, v_{i+1}\right)>0$ then $\bar{w}(c)>0$, contradicting the proved above lemma.
Ex. 4
skipped in hope of professionally read while solving the exercises, and well-gain from lectures.

Ex. 5

In page 636 there is a hint of using fibonacci-heabs. I am not sure whether it is the key of solving the problem. Anyway, The exercise is postponed untill we gain a guidance from others. Skimming the chapter did not yield any promising clue to pursue.

Ex. 6

Same as Ex. 5

Problems

Prob. 1

a

Case $r=w_{i, j}$. Nothing to be done.
Case $r<w_{i, j}$. Check to see if new paths including edge (i, j) offer less-weight.
(For LaTeX issue we denote matrix Π by P)

```
for x = 0 to n
    for y = 0 to n
        if d_x,i + r + d_j,y < d_x,y
            d_x,y = d_x,i + r + d_j,y
            P(x,j) = i
            P(x,y) = P(j,y)
```

Observe $\Pi(x, i)$ is the same, and same for its recursive vertices. Similarly to $\Pi(j, y)$.
Complexity. $\mathcal{O}\left(V^{2}\right)$
Case $r>w_{i, j}$. For paths which do not depend on $w_{i, j}$, Nothing needs to be updated about them. If their paths are less or equal than any path which includes $w_{i, j}$ then obviously these paths are still optimal when the weight of $w_{i, j}$ increases. If for vertex $x, P(x, j)!=i$ then x shall never visit edge $\{i, j\}$.
Our focus starts on vertices x whose $\Pi(x, j)$ equals i. For each such x and each arbitrary vertex y, We compute minimum paths from x to y and update if needed. Let D^{\prime} and Π^{\prime} denote minimum distance and predecessor matrices after updating the weight of edge $\{i, j\}$ to r, respectively. Any path $x \rightarrow y$ either consists of a single edge $\{x, y\}$ or contains an intermediate vertex between x and y. We loop on all vertices z to compute $D(x, z)+D(z, y)$ and then set $D^{\prime}(x, y)$. However, we must check whether edge $\{i, j\}$ falls into the path $x \rightarrow z$ or $z \rightarrow y$. if NO, then we know $D^{\prime}(x, z)=D(x, z)$ and $D^{\prime}(z, y)=D(z, y)$. If YES, then the new weight of path $x \rightarrow y$ which equals $D(x, y)+\left(r-w_{i, j}\right)$, is equal or less than the new weight $D(x, z)+D(z, y)+\left(r-w_{i, j}\right)$. That follows by $D(x, y) \leq D(x, z)+D(z, y)$ as the additional weight $r-w_{i, j}$ is added on both sides of the inequality. In this case we know z won't offer a less-weight path. So we can restrict our focus on vertices z whose corresponding paths do not include edge $\{i, j\}$.
(For LaTeX issues we denote matrix Π by P)

```
isEdgeInPath(edge {i,j}, path x -> y, predecessor P)
    if P(x,j) != i
        return False
    s = y
    while P(x,s) != x
        if P(x,s) == j
            return False
    return True
Main()
    for x = 0 to n
        if P(x,j) = i
            for y = 0 to n
            minDistance = min{ edge (x,y) if exists, D(x,y) + (r - w_i,j) }
            minVertex = NULL
            isDistanceUpdated = False
            for z = 0 to n
                if isEdgeInPath( {i,j}, x -> y, P) OR z = x OR z = y
                continue to next iteration of }
                    zDistance = D(x,z) + D (z,y)
                    if (distance < minDistance)
                        minDistance = zDistance
                        minVertex = z
                        isDistanceUpdated = True
            if isDistanceUpdated
                    P'(x,y) = P(z,y)
                        P'(x,z) = P(x,z)
```

Complexity. $\mathcal{O}\left(V^{3}\right)$
b

c
In the same manner matrices M and Π are maintainces distances and predecessors, We maintain also matrix W for the number of edges corresponding to $d_{i, j}$ in M. The algorithm then checks W before updating a new solution whether its number of edges is at most h.

Complexity. The overhead is constant over the original algorithm. In terms of parameters and h is postponed.

d

The algorithm constructs a series of matrices $L^{1}, L^{2}, . ., L^{n-1}$ where $L^{m}=\left(l_{i j}^{m}\right)$, indicating shortest-paths of edges length at most m. The adapted algorithm terminates on L^{h} and outputs it.

Complexity. At most the complexity of the original algorithm.

e

Prob. 2
a
We prove if there are two different minimum spanning trees, T_{a} and T_{b}, Then we can construct a minimum spanning tree T_{c} whose weight is less than either of them.

We define:

- $E_{a}=T_{a}(E)$
- $E_{b}=T_{b}(E)$
- $E_{c}=E_{a} \cap E_{b}$
- $E_{a-b}=E_{a}-E_{b}$
- $E_{b-a}=E_{b}-E_{a}$
- $E_{-c}=E_{a-b} \cup E_{b-a}$
- e_{a}, An edge in E_{a}
- $e_{a 0}$, An edge in E_{a-b}

Lemma. 1 For an edge $e_{a 0}=\{x, y\}, x$ and y are connected by a path in T_{b} which does not include edge $e_{a 0}$. Similarly for $e_{b 0}$.
Follows immediately as by definition $e_{a 0} \notin E_{b}$.
Lemma. 2 For an edge $e_{a 0}=\{x, y\}$, There exists distinct edges e_{b}^{1} and e_{b}^{2} such that e_{b}^{1} joins x and e_{b}^{2} joins y in E_{b}. Similarly for $e_{b 0}$.
Follows immediately by Lemma 1. Note the two edges e_{b}^{1} and e_{b}^{2} can share at most one vertix.

Lemma. 3 If there is a cycle where all edges are in E_{a} except exactly one edge e_{b} in E_{b}, and $w\left(e_{b}\right)<w\left(e_{a}^{i}\right)$ for some e_{a}^{i} in the cycle, then we can construct a MST $T_{a}^{\prime}=T_{a}-e_{a}^{i}+e_{b}$ of weight less than T_{a}
Consider two vertices, v_{1} and v_{2}, whose connectivity relies on edge $e_{a}^{i}=\{x, y\}$. The path is $p\left(v_{1}, x\right),(x, y), p\left(y, v_{2}\right)$. By adding e_{b} we know there is path $p_{0}(x, y) \neq(x, y)$, i.e x can reach y without edge (x, y). Therefore we can form an alternative path for v_{1} and v_{2} without relying on (x, y) by $p\left(v_{1}, x\right), p_{0}(x, y), p\left(y, v_{2}\right)$. Thus, Removing e_{a}^{i} is safe. Note It is clear neither $p\left(v_{1}, x\right)$ nor $p\left(v_{2}, x\right)$ contains edge (x, y) as that means there is an unnecessary cycle in the path.

Clearly E_{-c} is non-empty, Otherwise $T_{a}=T_{b}$. Without the loss of generality, Assume the selected element of E_{-c} is $\{x, z\}=e_{a 0} \in E_{a-b}$. There are only two cases regarding the weight of $e_{a 0}$.

Case 1: $w\left(e_{a 0}\right)=0$. By Lemma 1 we know there is a path $p(x, y)$ which does not include $e_{a 0}$. Clearly have a circle of, edges in E_{b} and exactly one edge in E_{a}. Since all weights of the graph are distinct and non-negative, $w\left(e_{a 0}\right)$ is strictly less than all edges in the circle. By Lemma 3, We can form a lower-weight MST. Contradiction.

Case 2: $w\left(e_{a 0}\right)>0$. By Lemma 2 we get edges e_{b}^{1} and e_{b}^{2} in E_{b} where they contain vertices x and y. Clearly it is not possible for both e_{b}^{1} and e_{b}^{2} to be in E_{a}. Otherwise we would have a cycle in T_{a} contradicting the fact a tree has no cycles. It is easy to justify it by considering $T_{a}^{\prime}=T_{a}-e_{a 0}$. Without the loss of generality assume $e_{b}^{1} \notin E_{a}$, i.e $e_{b}^{1}=e_{b 0}^{1}$. Denote $e_{b 0}^{1}$ by $\{y, z\}$.

We claim there is a cycle of edges including $e_{b 0}$ and $e_{a 0}$, Where all remaining edges are in E_{a}. By connectivity of T_{a} we know there is a path in T_{a} between x and z. Note the cycle is totally legit if it contained y. Similarly, There is a cycle of edges including $e_{a 0}$ and $e_{b 0}$, Where all remainig edges are in E_{b}.

We know $e_{a 0} \neq e_{b 0}$. In either cases some edge is greater than the other. By Lemma 3, We get a lower-weight spanning tree. Contradiction.

b

Correctness. For any graph G, There is a unique sub-graph G_{c}, Such that for any cycle c in G whose all edges are in G_{c} except for exactly one edge e_{x}, The weight of e_{x} is the maximum along the whole cycle of c. The proof is nearly identical to a.

Clearly the MST exerts this property lest we construct another spanning-tree of less weight. Since the algorithm claimed here always prefers less-weight edges, It shall never contradict that property also. By uniqueness the claimed algorithm yields the MST.

Algorithm Description. "postponed"
Complexity Analysis. "postponed"
c
Counter-example:

d
Correctness. Yes. The proof is nearly identical to a.
Algorithm Description. "postponed"
Complexity Analysis. "postponed"
e
f

