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Exercises

Ex. 1

Will do while solving the exercises.

Ex. 2

Here are how definitions and properties, are adapted to the extension.

Definitions and Properties Extended
Network Instructed below
Source s Sources {s1, s2, . . . , sks}
Sink t Sinks {t1, t2, . . . , tkt}

Capacity constraint Same
Flow conservation V - {sources} - {sinks}

flow value |f |
∑

si
(
∑

v f(si, v)−
∑

v f(v, si))

For brevity we illustrate the construction definition by the following diagram.

Observe
∑

v f(ssup, v) =
∑

si

∑
v f(si, v) and

∑
v f(v, ssup) =

∑
si

∑
v f(v, si) which
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concludes our goal.

Ex. 3

Denote f = αf1 + (1 − α)f2. We show f satisfies both definitions of (1) capacity and
(2) reservation.

(1) Clearly

0 ≤ αf1(u, v) ≤ αc(u, v)

0 ≤ (1− α)f2(u, v) ≤ (1− α)c(u, v)

Which concludes

αf1(u, v) + (1− α)f2(u, v) ≤ αc(u, v) + (1− α)c(u, v) = c(u, v)

(2) Clearly,

α
∑
v

f1(u, v) = α
∑
v

f1(v, u)

(1− α)
∑
v

f2(u, v) = (1− α)
∑
v

f2(v, u)

Which concludes∑
v

αf1(u, v) + (1− α)f2(u, v) =
∑
v

αf1(v, u) + (1− α)f2(v, u)

Ex. 4

Intuitively and without proof, min-cut is S = {s, v1, v2, v4} and T = {v3, t}.

c.

Ex. 5

Comment: I don’t feel confident about the solution.

By Ex. 2 we have a construction procedure from multiple to single with the same flow
value. Intuitively and without proof, a flow of multiple corresponds to a flow of the
same value in single. Then solving the single yields a max-flow for multiple.
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Problems

Prob. 1

a

1
Notation. We say an edge (u, v) is saturated in F if f(u, v) = c(u, v).

Fact. Since F is a max-flow, we know there is no augmenting path existing in it.

Lemma. Based on the fact, Lest a flow greater than |f | gets constructed in F , The
following cannot happen in F ′:

� Augmenting path, not containing edge (u, v).

� Augmenting path, containing (u, v), but (u, v) was not saturated in F .

� Augmenting path, containing (u, v), but f(u, v) is decreased.

Lemma. Then, the possible cases of F ′ are:

� No augmenting path exists, Then |f ′| = |f |.

� Augmenting path exists, containing (u, v), which was saturated in F , and flow
increases it in F ′. Since c′(u, v) = f(u, v) + 1, Then by definition of taking the
minimum values along the path, It is concluded the increase in flow is at most 1.

If an augmenting path is taken in F ′, Then by the same line of reasoning, No second
augmenting path is possible. Note f ′(u, v) = c′(u, v) now.

2
Similar.

A difference is the increase shall be at most k rather than at most 1, Following taking
the minimum values along the augmenting path.

It is possible to have multiple augmenting paths, but even in that case, the overall
increase shall be upperbounded by k.

The same line of reasoning leads to, any existing augmenting path, must be in the edge
(u, v) whose capacity is increased.

3
Symmetric.

4
Similar.
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b

Intuitively and without a proof, apply Ford-Fulkerson method, Searching for paths
which only contains edge (u, v) whose capacity is increased. Intuitively that search
restriction yields the upperbound k · (V + E).

c

Intuitively and without a proof, If the new capacity c(u, v) is less than the flow of F , Fix
the flow by decreasing flow values of edges which are in paths containing (u, v), Then
similarly to b, apply Ford-Fulkerson but only on paths containing (u, v). Intuitively
that search restriction yields the upperbound k · (V + E)

Prob. 2

Out solution is based on intuition not a rigorous proof. Given a directed graph input,
Construct a corresponding flow network where:

� A new source vertex s has a new edge with each si.

� All edges have a capacity equal to 1.

Then we run Ford-Fulkerson to find the maximum flow. Now observe

� If max-flow |f | = k, output ”Possible”

� if max-flow |f | ≠ k, output ”Impossible”

The goal of edge-disjoint paths is realized by setting all capacities to 1. If max-flow is
k then each si has a path to t. If max-flow is not k then it must be less than k and
means some si doesn’t have a successful flow to t.

Prob. 3

Observe the following illustrative diagram which models the problem as a max-flow
problem.
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A customer ai has an edge with food bj in our constructed graph, If we are given bj ∈ Ai.
There is an additional edge for each customer to the special vertex 10$.

Intuitively and without a proof, Maximizing a flow, corresponds to minimizing the 1-
flow value output from each customer to the 10$ vertex as it does not reach vertex t
and hence does not contribute to increasing the flow.
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