Problem-Set 09

Mostafa Touny

April 20, 2023

Contents

Exercises 2
Ex. 1 2
Ex. 2 2
Ex. 3 2
Ex. 4 2
Problems 2
Prob. 1 2
Prob. 2 4

Exercises

Ex. 1

Ex. 2
Ex. 3
Ex. 4

Problems

Prob. 1

a

Consider

$$
\begin{aligned}
A & =\{1,2\} \\
S & =\{1,50\} \\
V & =\{2,50\} \\
B & =50
\end{aligned}
$$

Observe the optimal solution is $C=50$ while $\operatorname{Alg} 1$ is of value $C *=2$. Therefore the approximation ratio is $2 / 50=1 / 25$.

It is easy to see the number 50 can be set arbitrarily larger, and therefore we can reach the desired unbounded approximation ratio.
b
We follow the same convention of assuming the given indices order follow non-increasing order of their densities.
For the first index i such that $\sum_{j=1}^{i} v_{j}>B$, denote items up to $i-1$ by Max-Dens-Items and i th item by First-Overweight. For item a_{i} denote $D\left(a_{i}\right)$ to be the density of a_{i}, i.e the value per one unit of weight.

Take D (First-Overweight) and multiply it by the slack weight in B after consuming weights of Max-Dens-Items. Sum the resulting value along values of Max-Dens-Items and let $V_{\text {maxDensities }}$ denote that sum.

It is very clear $C * \leq V_{\text {maxDensities }}$ as we fully utilized the space of B with maximum possible densities.

Let's return to Alg2 and note how similar it is to the way we defined $V_{\text {maxDensities }}$. Remark that $C=\max \left\{V_{\text {maxDensities }}\right.$, value of First-Overweight $\}$. We have two cases:

- Case 1. Weights of Max-Dens-Items $\geq \frac{B}{2}$.

Then $C \geq \frac{V_{\text {maxDensities }}}{2}$, As Max-Dens-Items accounts for more than 50% of $V_{\text {maxDensities }}$.

- Case 2. Weights of Max-Dens-Items $<\frac{B}{2}$.

Then the weight of First-Overweight is greater than $\frac{B}{2}$. It follows $V_{\text {maxDensities }}$ is contributed only by Max-Dens-Items and First-Overweight. Observe one of them must contribute at least 50% of $V_{\text {maxDensities }}$. By definition, that one shall be selected by $\operatorname{Alg} 2$, and therefore $C \geq \frac{V_{\text {maxDensities }}}{2}$.

c

That is a standard dynamic programming problem whose solution can be found in any textbook. For brevity we only show the recurrece relation.

Base: $S_{1, v}=w\left(a_{1}\right)$ if $w\left(a_{1}\right)=v$.
Induction Step: $S_{i, v}=\min \left\{S_{i-1, v}, w\left(a_{i}\right)+S_{i-1, v-v_{i}}\right\}$
d
Polynomial Time Complexity. Observe the time complexity of $\operatorname{Alg} 3$ is $\mathcal{O}\left(n^{2} V\right)$, As the memoization table is:

value \backslash items	1	..	n
1			
..			
nV			

Since $A l g 4$ basically runs $A l g 3$ with additional linear operations, Its time complexity is $\mathcal{O}\left(n^{2} V^{\prime}\right)$, where V^{\prime} is similarly defined but on scaled values v_{i}^{\prime}.
Clearly $V^{\prime}=\left\lfloor\frac{V}{V} \cdot \frac{n}{\epsilon}\right\rfloor=\left\lfloor\frac{n}{\epsilon}\right\rfloor$. So complexity of Alg4 can be re-written as $\mathcal{O}\left(n^{3} \cdot \frac{1}{\epsilon}\right)$.
Approximation Scheme. The idea is to use the bound of \mathbf{b} but on scaled values v_{i}^{\prime}, then reverse the scaling to reach the intended ratio.

Let U be the upper-bound of optimal solutions which we defined earlier in \mathbf{b} on given values v_{i}. Let U^{\prime} be similarly defined but on scaled values v_{i}^{\prime}. Define function f so that it scales value as mentioned by the author. Let C and C^{\prime} denote the value of the subset solution obtained by $A l g 4$ but on given and scaled values respectively.
From b, We know there exists a solution on scaled values v_{i}^{\prime} whose approximation ratio is 2 , out of U^{\prime}. Then trivially the optimal solution also can deviate by a ratio of at most 2 out of U^{\prime}.

Observe if we scaled back a value then the calculated value is no greater than the original given value, since we are taking ceils. In other words, $f^{-1}\left(v_{i}^{\prime}\right) \leq v_{i}$.

Joining all these remarks:

$$
\begin{aligned}
C^{\prime} & \geq \frac{1}{2} U^{\prime} \\
C \geq f^{-1}\left(C^{\prime}\right) & \geq \frac{1}{2} f^{-1}\left(U^{\prime}\right)=U
\end{aligned}
$$

From \mathbf{b}, That suffices to concluding $A l g 4$ is an approximation scheme.

Prob. 2

a

Assume for the sake of contradiction there is a cycle c_{0} in the reversed graph \hat{G}. Then it must contain an edge from A. Otherwise c_{0} would also be in graph G and by definition it must contain an edge from A. Call that edge a. Returning to G, a would be reversed as in the figure below. It is possible to have edges other than a in cycle c_{0} which would also be reversed in graph G. In this case p_{0} would be constructed by taking the corresponding sub-cycles into it.

Since A is minimal there must be a cycle c_{1} in graph G which would not be covered if not for a. Observe we have cycle c_{2} constructed by paths p_{0} and p_{1}. What covers c_{2} in G ? Clearly no edge in path p_{0} would do that since we already considered all edges of A we might encounter and took a sub-cycle avoiding them. Then c_{2} is covered by edge b in path p_{1} which is part of the cycle c_{1}. That contradicts c_{1} being a cycle only covered by edge a. QED.

b

Remove all isolated vertices as they are irrelevant to cycles. Iteratively contract edges if they are not a side of a triangle as in the following figure.

By definition, Each edge of the resulting graph is a side of a triangle. Observe the graph is still equivalent to the previous one, When it comes to cycles. Intuitively we just condensed the length of cycles.

For a single edge e, Consider the number of different triangles it is a side of. If the number is greater than k then we must have $e \in S$; Otherwise, To cover all of these triangles, We will need more than k edges. Note any two different triangles can share at most one edge. Remove edge e, and contract edges as needed if they are no longer a side of a triangle (suffices also to maintain no isolated vertices). Output the resulting graph as \hat{G} but with a capacity of at most $k-1$ edges to cover all of its cycles.

After repeating this process, We will have a graph where each edge is a side of a triangles, whose count is no more than k. Also each vertex is part of a cycle. We show now the number of vertices is upper-bounded by $k^{2}+2 k$. They key idea is, If there is an additional vertex, We will have cycles more than what k edges can accommodate.

For a single edge e, It can cover at most k cycles. Vertices in those cycles are exactly, 2 of the edge itself, and k for each cycle. That is a total of $2+k$. See the picture below:

Considering all edges of A, The total we get is $k(2+k)=2 k+k^{2}$.
It is clear now we cannot have vertices greater than that number. As by our graph structure that vertex v would be part of a cycle, and we have already consumed the maximum number of cycles k edges can cover. In other words, We will miss a cycle which contains vertex v.

c

It suffices to have a polynomial-time algorithm of the kernlization procedure we illustrated.

- Degrees of vertices are computed by a linear scan of edges, $\mathcal{O}(|E|)$.
- Contracting edges takes at most $\mathcal{O}\left(|E|^{2}\right)$.
- Computing number of triangles for each edge takes at most $\mathcal{O}(|E|(|E|+|V|))$ by a trivial graph search, made for each edge.
- Removing edges consumes $\mathcal{O}(|E|)$.

Since each step is polynomial in the size of the input, The sum of these sub-routines is polynomial also.

