MACT 4127 - Real Analysis II Spring 2025 Homework (3) Deadline for submission: April 15 on CANVAS.

- (1) Let (Ω, Σ, μ) be a finite measure space, and let $(A_k)_{k \in \mathbb{N}^*}$ be a family of sets in Σ . We define
 - $\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} (\bigcup_{k \ge n} A_k),$
 - $\lim \inf_n A_n = \bigcup_{n=1}^{\infty} (\cap_{k \ge n} A_k).$

Prove that

 $\mu(\limsup_{n} A_n) \ge \limsup_{n} \mu(A_n), \text{ and } \mu(\liminf_{n} A_n) \le \liminf_{n} \mu(A_n).$

Give examples to show that equalities do not hold.

Use the first inequality to prove:

The Borel-Cantelli Lemma

If $\sum_{n=1}^{\infty} \mu(A_n) < +\infty$, then $\mu(\limsup_n A_n) = 0$.

(2) Let $\lambda > 0$ be fixed, and let $p_n = \frac{\lambda^n}{n!}$. Define the set function:

$$p_{\lambda,0}(\{k\}) = p_k, \quad k \in \mathbb{N}^*.$$

- (i) Show that $p_{\lambda,0}$ is a premeasure.
- (ii) Apply the Carathéodory extension theorem to obtain a measure p_{λ} that extends $p_{\lambda,0}$.
- (iii) What is the domain of p_{λ} ?
- (iv) Is p_{λ} a finite measure?
- (3) Let (Ω, Σ) be a measurable space, and let $\mathcal{E} \subset \Sigma$ be a generating set, *i.e.* $\Sigma = \sigma(\mathcal{E})$, such that $\Omega \in \mathcal{E}$. Prove that if μ, ν are two finite measures defined on Σ satisfy $\mu(E) = \nu(E)$ for any $E \in \mathcal{E}$, then $\mu(A) = \nu(A)$ for all $A \in \Sigma$.
- (4) Prove that the Lebesgue measure on \mathbb{R}^2 is the product of two copies of the Lebesgue measure on \mathbb{R} , all considered on Borel sets, *i.e.* prove that
 - (a) $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}),$

(b) For any $B \in \mathcal{B}(\mathbb{R}^2)$: $m_2(B) = (m \otimes m)(B)$.

(5) Prove that if μ is a measure on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$, which is invariant under translations, $(i.e. \ \mu(B + (x_0, y_0)) = \mu(B)$ for any Borel set B and any $(x_0, y_0) \in \mathbb{R}^2$, and $\mu(B) < +\infty$ for any bounded Borel set B, then there exists a positive constant c such that $\mu(B) = cm(B)$ for any Borel set B.

Deduce that the Lebesgue measure on \mathbb{R}^2 is invariant under rotations.

The next part will not be graded, it is added just for fun :)

(6) (Hausdorff Measures) We fix a real number $\alpha \geq 0$. The object of this exercise is to define a measure on Borel subsets of \mathbb{R}^N called the α -Hausdorff measure.

A *canonical* r-box in \mathbb{R}^N is a set of the form

$$B(a;r) = [a_1, a_1 + r[\times[a_2, a_2 + r[\times \dots \times [a_N, a_N + r[, where a = (a_1, a_2, \dots, a_N) \in \mathbb{R}^N]]$$

Given $\delta > 0$ we define the set function

$$H^{\alpha}_{\delta}(A) = \inf\{\sum_{k=1}^{\infty} r^{\alpha}_k : A \subset \bigcup_{k=1}^{\infty} B(a^{(k)}; r_k), 0 \le r_k < \delta \,\forall k\}.$$

- (i) Prove that if $\delta_1 < \delta_2$, then $H^{\alpha}_{\delta_1}(A) \ge H^{\alpha}_{\delta_2}(A)$.
- (ii) Define $H^{\alpha*}(A) = \lim_{\delta \to 0} H^{\alpha}_{\delta}(A)$, and prove that it's an outer measure.
- (iii) For N = 1: compute $H^{\alpha*}(A)$ for $\alpha = 0, \frac{1}{2}, 1$ where A is the unit interval. Do the same when A is a finite set of points and when $A = \mathbb{Q}$.
- (iv) We say that $A \subset \mathbb{R}^N$ is H^{α} -measurable if

$$H^{\alpha*}(E) = H^{\alpha*}(E \cap A) + H^{\alpha*}(E \setminus A), \text{ for all } E \subset \mathbb{R}^N.$$

Prove that the family \mathcal{M}^{α} of all H^{α} -measurable sets is a σ -algebra, that contains all Borel sets.

- (v) H^{α} is defined to be the restriction of $H^{\alpha*}$ to \mathcal{M}^{α} . Prove that H^{α} is a measure. (You only need to show that it's σ -additive).
- (vi) Given a Borel set A, show that there exists $\alpha_0 \ge 0$ such that

$$\alpha < \alpha_0 \Longrightarrow H^{\alpha}(A) = +\infty, \quad \alpha > \alpha_0 \Longrightarrow H^{\alpha}(A) = 0.$$

This value α_0 is called the Hausdorff dimension of A.

- (vii) Show that for a non-empty open set $U \subset \mathbb{R}^N$: the Hausdorff dimension of U is N.
- (viii) Find (on the internet) an example of a subset of \mathbb{R}^2 whose Hausdorff dimension is $\frac{3}{2}$.