MACT 4127 - Real Analysis II Spring 2025 To be submitted by May 24, 2025

Electronic submission is accepted only in PDF format.

(1) Let (Ω, Σ, μ) be a measure space, and let $f, g: \Omega \longrightarrow \overline{\mathbb{R}}$. Prove that if f.g are integrable functions, then

$$f \wedge g = \min(f, g)$$
, and $f \vee g = \max(f, g)$

are integrable functions.

- (2) Find an example for two integrable functions whose product is not integrable.
- (3) Let (Ω, Σ, μ) be a measure space, and let $f : \Omega \longrightarrow \overline{\mathbb{R}}$ be a Σ -measurable function.
 - (a) Let f be non-negative, and for any t > 0 let

$$A_t = \{ x \in \Omega : f(x) \ge t \}.$$

Prove Markov inequality:

$$\mu(A_t) \le \frac{1}{t} \int f \chi_A \, d\mu.$$

(b) Let $f: \Omega \longrightarrow \mathbb{R}$ be an arbitrary Σ -measurable function. Prove that if f is μ integrable, then there exists a countable family $(B_n)_{n \in \mathbb{N}^*}$ of elements of Σ , each
of which has finite measure, such that

$$f^{-1}\left(\overline{\mathbb{R}}\setminus\{0\}\right)=\cup_{k=1}^{\infty}B_k.$$

- (c) Prove that if f is μ -integrable, and $\int_{\Omega} |f| d\mu = 0$, then f = 0 μ -almost everywhere.
- (4) Let (Ω, Σ, μ) be a finite measure space, and let $f : \Omega \longrightarrow \overline{\mathbb{R}}$ be a non-negative measurable function. Let

$$A_n = \{x \in \Omega : f(x) \ge n\}.$$

Prove that f is μ -integrable iff the series $\sum_{n=1}^{\infty} \mu(A_n)$ is convergent/

- (5) Let (Ω, Σ, μ) be a measure space, and let $f : \Omega \times [a, b] \longrightarrow \mathbb{R}$ be a function satisfying
 - (i) For each fixed $t \in [a, b]$: the function

$$f_t: \Omega \longrightarrow \mathbb{R}$$
 defined by $f_t(x) = f(x, t)$

is μ -integrable.

(ii) For each fixed $x \in \Omega$: the function

$$f^x: [a,b] \longrightarrow \mathbb{R}$$
 defined by $f^x(t) = f(x,t)$

is differentiable.

(iii) There exists an integrable function $g: \Omega \longrightarrow [0, +\infty)$ such that

$$\left|\frac{f(x,t) - f(x,s)}{t - s}\right| \le g(x), \quad \forall x \in \Omega, \forall t, s \in [a,b], t \neq s.$$

Prove that, for each $t_0 \in]a, b[$, the function $h(t) = \int_{\Omega} f_t d\mu$ is differentiable at t_0 , and that

$$\frac{dh}{dt}\Big|_{t=t_0} = \int_{\Omega} \frac{d}{dt} f(.,t)\Big|_{t=t_0} d\mu$$