# Harvey's Notes I - Chapter 01 

Mostafa Touny

November 15, 2023

## Contents

Exercises ..... 2
Ex. 1 ..... 3
Ex. 2 ..... 4

## Exercises

Ex. 1

## Part I

```
def randElement(A[1..n])
    X = random( [n] )
    return A[X]
```

Since the probability space is uniform, For event $M=\left\{\frac{n}{4}+1, \ldots, \frac{3}{4} n\right\}, \operatorname{Pr}[M]=$ $\frac{1}{n} \cdot|M|=\frac{1}{n} \cdot \frac{n}{2}=\frac{1}{2}$.

## Part II

Additionally we certify if the randomly generated element is in middle half.

```
def randElement2(A[1..n])
    # Select a random element of A
    k = randElement(A)
    # Certify whether it is in middle half
    # count values less and greater
    countLess = countGreater = 0
    for i in 1..n:
        if A[i] < k
                countLess = countLess + 1
            else if A[i] > k
                countGreater = countGreater + 1
        # check if k is between first and forth quarters
        if (countLess >= n/4) and (countGreater >= n/4)
            return k
        return FAIL
```

Let $R$ be the algorithm's output. $R=F A I L$ if and only if $\neg M$. So $\operatorname{Pr}[R=F A I L]=$ $\operatorname{Pr}[\neg M]=1-\operatorname{Pr}[M]=1-\frac{1}{2}=\frac{1}{2}$.

## Part III

We repeat until the probability is upperbounded by 0.01 .

```
def randElement3(A[1..n])
    # repeat 7 times
    for i in 1..7
```

```
    # generate a random element
    out = randElement2(A[1..n])
    # if the number is certified to be correct return it
    if out != FAIL
    return out
# if 7 trials failed
return FAIL
```

Setting $0.5^{x}=0.01$ we get $x=\log _{1 / 2} 0.01=\frac{\log _{2} 100^{-1}}{\log _{2} 2^{-1}}=\frac{(-1) \log _{2} 100}{(-1) \log _{2} 2}=\log _{2} 100 \leq$ $\log _{2} 128=\log _{2} 2^{7}=7$

Let $R$ be the algorithm's output, and let $R_{i}$ be the output of subroutine randElement2 in iteration $i$. Then $R=F A I L$ if and only if $R_{1}=F A I L \wedge \cdots \wedge R_{7}=F A I L$. We know $\operatorname{Pr}\left[R_{i}=F A I L\right]=\frac{1}{2}$ and $R_{i}$ are pairwise independent. We conclude $\operatorname{Pr}[R=F A I L]=$ $\operatorname{Pr}\left[R_{1}=F A I L \wedge R_{2}=F A I L \wedge \cdots \wedge R_{7}=F A I L\right]=\left(\frac{1}{2}\right)^{7} \leq 0.01$.

## Ex. 2

## Part I

Trivial.

## Part II

Hint. By Dr. I. El-Shaarawy, Not to skip Part I, and to observe the pattern in the following example. It signals the answer is $2^{k}$ if $x=0$ and $2^{k-1}$ otherwise.

| Binary Number | Count of Even Parity |
| :---: | :---: |
| 000 | 8 |
| 001 | 4 |
| 010 | 4 |
| 011 | 4 |
| 100 | 4 |
| 101 | 4 |
| 110 | 4 |
| 111 | 4 |

Lemma 1. The zero $0=\underbrace{00 \ldots 0}_{k \text { times }}$ counts $2^{k}$ numbers of even parity.
Trivially, Bitwise $\operatorname{And}(0, x)=0$ for any binary number $x \in\left[2^{k}\right]$, and $\operatorname{Parity}(0)=0$.
Now we can focus on $x \neq 0$.

Definition 2. Given $x$ denote indices of 1-bits by 1-bits-indices.
Lemma 3. 1-bits-indices decide the parity.
Observe for any $r \in\left[2^{k}\right]$.

$$
\text { BitwiseAnd }\left(x_{i}, r_{i}\right)= \begin{cases}0 & \text { if } x_{i}=0 \\ r_{i} & \text { if } x_{i}=1\end{cases}
$$

So we can restrict our focus only on 1-bits-indices to compute the parity. In other words

$$
\operatorname{Parity}(\text { Bitwise } A n d(x, r))= \begin{cases}0 & \text { if } r \text { has even } 1 \text { bits in 1-bits-indices } \\ 1 & \text { if } r \text { has odd } 1 \text { bits in 1-bits-indices }\end{cases}
$$

Lemma 4. The number of $k$-length strings containing even number of 1 bits in 1 -bitindices is $2^{k-1}$.

Define a bijection
$f:\{$ strings of even 1-bits in 1-bits-indices $\} \rightarrow\{$ strings of odd 1-bits in 1-bits-indices $\}$
Mapping a binary string to the same string but with last bit in 1-bit-indices flipped. If that bit is $s_{m}$, Then $f\left(s_{1} s_{2} \ldots s_{k}\right)=s_{1} s_{2} \ldots \overline{s_{m}} \ldots s_{k-1} s_{k}$. It follows domain and range have the same cardinality, and since they partition the set of $k$-length strings, the result follows.

Theorem 5. Fixing any binary $x \neq 0$, Among all $r \in\left[2^{k}\right]$, Exactly half of them yield even parity, i.e $\operatorname{Parity}(\operatorname{Bitwise} \operatorname{And}(x, r))=0$.
Corollay 6. Given $x \in\left[2^{k}\right]$, The number of zeros in the vector mentioned in question is

$$
\begin{cases}2^{k} & \text { if } x=0 \\ 2^{k-1} & \text { if } x \neq 0\end{cases}
$$

