
Harvey’s Notes I - Chapter 02

Mostafa Touny

December 6, 2023

Contents

Exercises 2
Ex. 1 . 2
Ex. 2 . 4
Ex. 3 . 6
Ex. 4 . 10
Ex. 5 . 10
Ex. 6 . 10
Ex. 7 . 11

1

Exercises

Ex. 1

Part I

Take m = n− 1, and let R be the algorithm’s output. R = 0 if and only if RNG() returned
0 or n− 1. So Pr[R = 0] = 2/n and Pr[R = i] = 1/n for i ̸= 0.

Part II

Define k = ⌊n/m⌋, So k is the greatest integer such that mk ≤ n. Define r = n mod mk, so
n = mk + r where 0 ≤ r < m.

def goodSampler(m)

k = floor(n/m)

do

r = RNG()

while r >= mk

return r mod m

Uniformity. Assume the algorithm terminates. So we are given r < mk and we want to
prove Pr[r mod m = i | r < mk] = 1

m for i ∈ [m]. Observe

Pr[r mod m = i | r < mk] =
Pr[r mod m = i ∩ r < mk]

Pr[r < mk]

=
k/n

mk/n
=

k

n
· n

mk
=

1

m

Recall by uniformity the probability is basically the number of outcomes satisfying the event
over all possible outcomes. Clearly the k outcomes of r yielding i by the algorithm are
(0)m+ i, (1)m+ i, (2)m+ i, . . . , (k − 1)m+ (i).

Time Complexity. For an iteration of do-while, probability of termination is mk/n. So in
expectation it takes n/mk trials until it terminates. It follows

1 ≤ n

mk
= 1 +

r

mk
< 1 +

m

mk
= 1 +

1

k
≤ 2.

Concluding its time is O(1).

Ex. 2

Distribution. see ex-2.2 notebook.

The distribution of the given psuedo-code seems uniform.

2

The distribution but with modifying the probability to be hardcoded p = 0.7 rather than
p = ContinuousUniform() in line 2, seems normal.

3

Recall we know in expectation we will get 7 1-bits out of 10 by linearity of random variables.

Remark. X =
∑

Xn
i is equivalent to number of 1s tossed.

Lemma. Probability of tossing k 1s.

For some fixed probability of getting 1 p, and number of coin tosses n, The probability of

drawing k 1s is Pr[X = k] = (p)k(1 − p)n−k

(
n

k

)
, Since the distribution of coin tossing is

binomial.

Ex. 3

Part I

Algorithm.

input: Probabilities P[i]

output: category sampled

def categoricalSampler(P[1..k])

initially the universe is all probabilities

totalProb = sum(P[1..k])

for each ith probability

for i in 1..k

compute P[i] probability in ratio to the universe

i_prob_uni = (1/totalProb) * P[i]

return i by that probability

if biasedBit(i_prob_uni)

return i

remove P[i] from the universe

totalProb -= P[i]

Correctness. Computing a probability out of a subset of probabilities.

We want to compute a probability but in ratio to some subset of probabilities.

For example if Pr[X = i] = 1/4 for i ∈ {1, 2, 3, 4}, But we are given X ̸∈ {1, 2}. Then

Pr[X = 3 | X ̸∈ {1, 2}] = Pr[X = 3 ∩X ̸∈ {1, 2}]
Pr[X ̸∈ {1, 2}] =

1/4
1/2

= 2 · 14.

Generally we want to find x where, For sum S of some subset of probabilities,
Pr[X = i]

S = x
1 ,

so x = 1
S · Pr[X = i].

Correctness. categoricalSampler returns a category.

If the algorithm reached iteration k, i_prob_uni would be 1 so biasedBit surely fires.

4

Time Complexity. Clearly O(k).

Part II

Algorithm

input: probabilities P[i]

output: cumulative sum of probabilities S[i]

def cumulativeSum(P[1..k])

S[i] is sum up to P[i]

S = []

sum = 0

compute & append S[i]

for i in 1..k

cumulative sum up to P[i]

sum += P[i]

append as S[i]

S.append(sum)

return S

input: probabilities P[i], and cumulative probabilities S[i]

output: sampled category i

def recursiveSampler(P[l..r], S[l..r])

base case. universe is one category so its probability is 1

if l = r

return l

center index

mid = floor((r-l)/2)

total probability of P[l..r]

totalProb = S[r] - S[l] + P[l]

probability of cumulative half of P in ratio to the universe

prob_uni = (1/totalProb) * S[mid]

toss a coin by cumulative probability of half of P

if biasedBit(prob_uni)

if True then the sample is restricted to them

return recursiveSampler(P[l..mid], S[l..mid])

5

else

if False then the sample is not any of them

return recursiveSampler(P[mid+1..r], S[mid+1..r])

input: probabilities P[i]

output: sampled category i

def categoricalSampler2(P[1..k])

preprocessing, computing cumulative sum of probabilities

S = cumulativeSum(P[1..k])

sample a category

return recursiveSampler(P, S)

Correctness. recursiveSampler won’t ever reach array P of size zero.

That can only happen if either mid = r or mid = l, but then S[mid] = 1 or S[mid] = 0

respectively. Contradiction.

Correctness. The algorithm samples category i with probability P [i].

The remarks from Part I holds here. We show a more formal proof.

Let X = z denote the event of sampling category z. Let j1, j2, . . . , jk−1 be the remaining
categories. Then Pr[X = z] = Pr[X ̸= j1 ∩X ̸= j2 ∩ · · · ∩X ̸= jk−1]. Partition js on subsets
of outcomes O1, O2, . . . , Olog k.

Pr[X = z] = Pr[X /∈ O1 ∩X /∈ O2 ∩ · · · ∩X /∈ Olog k]

= Pr[X /∈ O1 | X /∈ O2 ∩ · · · ∩X /∈ Olog k]

· Pr[X /∈ O2 | X /∈ O3 · · · ∩X /∈ Olog k] · .. · Pr[X /∈ Olog k]

Let R be the algorithm’s output, and let Ri correspond to biasedBit in iteration i. Clearly
Pr[R ∈ {l, l+1, . . . ,mid}] = Pr[Ri = True] and Pr[R ∈ {mid+1,mid+2, . . . , r}] = Pr[Ri =
False]. The algorithm samples z if and only if R1 = x1 ∩ R2 = x2 ∩ · · · ∩ Rlog k = xlog k
corresponding to xi = True if z /∈ {mid + 1, . . . , r} = Oi. In other words the algorithm
satisfies the definition of Pr[X = z].

Time Complexity. Clearly cumulativeSum takesO(k) and recursiveSampler takesO(log k)

6

Ex. 4

Idea. See the following sketch for an intuition.

� Compute cumulative sums qi.

� Construct k intervals, each of size 1/k.

� If some qi is sandwiched in some interval, separate that interval to two pieces.

� Accordingly label pieces which pi they belong to.

� Sample a UniformLBitInteger to select a uniformly random interval out of those k
intervals.

� If it is separated, Toss a coin by BiasedBit to decide a piece.

� Output the piece’s label.

Algorithm.

input: probabilities P[i]

output: cumulative sum of probabilities S[i]

def cumulativeSum(P[1..k])

S = []

sum = 0

for i in 1..k

sum += P[i]

S.append(sum)

return S

input: integer k

output: k-intervals of size 1/k each

def kIntervalsConstruction(k)

7

start, end, and separation points, decides a pair of intervals

end - start = 1/k

intervals = [

[st, end, sep, label]

]

construct the k intervals

for i in 1..k

length of interval is 1/k

intervals.append(

[(i-1)/k, i/k, NULL, NULL]

)

return intervals

input: 2d-array of k-intervals, and the cumulative sum S

output: None. It modifies the 2d-array to be filled with separators and labels

def sepPointsFromArray(Inter[1..k, 4], S[1..k])

pointer for S

S_poi = 1

for each kth interval

for i in 1..k

if S[S_poi] is contained in the kth interval

if Inter[i][st] <= S[S_poi] <= Inter[i][en]

set S[S_poi] as the separator

Inter[i][sep] = S[S_poi]

consider next index

S_poi += 1

otherwise, leave the separator with NULL

in either cases cache S_poi

latter case. whole interval is labeled by S_poi

former case. first piece is labeled by S_poi and

second piece is labeled by S_poi+1

Inter[i][label] = S_poi

input: k-probabilities P[i]

8

output: k intervals, each of size 1/k, possibly separated to have pairs

def intervalToPieces(P[1..k])

S[i] is cumulative sum up to P[i]

S = cumulativeSum(P)

construct k-intervals of size 1/k each

intervals = kIntervalsConstruction(k)

in-place fill "sep" and "label" cells in intervals

sepPointsFromArray(intervals, S)

return intervals

input: Probabilities P[i]

output: sampled category i

def sample(P[1..k])

preprocessing is not needed to be called for every sample call

intervals = intervalToPieces(P)

uniform random index of intervals

randIndex = uniformLBitInteger(lg k)

uniform random interval from intervals

randInterval = intervals[randIndex]

if it has no separator

if randInterval[sep] = NULL

then it belongs to cached label

return randInterval[label]

else

it has a separator

compute proportion of separator in ratio to the interval of size 1/k

prop = (randInterval[sep] - randInterval[st]) / (1/k)

toss a coin by a probability proportional to the separator

if biasedBit(prop)

if it lands before the separator then we are in a piece labeled by "cached label"

return randInterval[label]

else

9

if it lands after the separator then we are in the piece next to one labeled by "cached label"

return randInterval[label] + 1

Correctness. No probabilistic claim is outside what we proved and illustrated in previous
exercises.

Time Complexity. Preprocessing consumes O(k), Since all its subroutines take O(k) each.
Sampling consumes O(1) since both uniformLBitInteger and biasedBit consume O(1).

Ex. 5

Postponed.

Ex. 6

*Note. It feels weird we derived a solution better than the requested bound.

Algorithm

def uniformPrime(n)

do

keep sampling uniform numbers in {1, .., 20n}

rand = uniformRandom(20n)

as long as the sampled is not prime

while not isPrime(rand)

only if we found a prime, we return it

return rand

Correctness. We used the technique of Rejection Sampling which guarantees the prime
number output is uniform. The proof idea is very similar to our previous probability proofs.

Analysis. From Fact A.2.12 (page 226), There are at least n/ lnn primes in Pn. So the
probability of a successful trial is at least n/ lnn. Then the number of trials is at most lnn/n in
expectation by Fact A.3.20 (page 233). Observe lnn/n ≤ log n/n. Since we are given isPrime

is O(log7 n), The whole algorithm uniformPrime takes at most O(log8 /n) ⊂ O(log10 n).

10

Ex. 7

Part I

The probability of sampling from R is disk-area
square-area =

π(1)2

2 ∗ 2 ≈ 22
7 · 14 = 22

28.

It follows the number of iterations is at most 28
22 = 1 + 3

11 ≤ 2.

Part II

Partially Solved.

Seemingly we just need to compute volumes of both S and R but in 20th dimension, and
follow exactly the same recipe of Part I.

11

	Exercises
	Ex. 1
	Ex. 2
	Ex. 3
	Ex. 4
	Ex. 5
	Ex. 6
	Ex. 7

