Homework 3

Mostafa Touny

February 27, 2024

Contents

Exer	c	is	es																						2
1														 											2
2														 											2
3														 											3
4					•					•	•	•		 					•	•	•				3

Exercises

1

(i)

Reflexive. Consider the identity bijection $\varphi : v \mapsto v$, Which trivially satisfies $\{uv\} \in E$ iff $\varphi(v)\varphi(u) \in E$.

Symmetric. Given a bijection φ , Its inverse φ^{-1} exists and clearly is a bijection too. Now we prove $\{uv\} \in E$ iff $\varphi^{-1}(u)\varphi^{-1}(v) \in E$.

Denote $\varphi^{-1}(u) = u'$ and $\varphi^{-1}(v) = v'$.

 (\rightarrow) . We are given $\{uv\} \in E$, i.e $\{\varphi(u')\varphi(v')\} \in E$. By symmetry hypothesis it follows $\{u'v'\} \in E$, i.e $\{\varphi^{-1}(u)\varphi^{-1}(v)\} \in E$.

 (\leftarrow) . We are given $\{\varphi^{-1}(u)\varphi^{-1}(v)\in E\}$, i.e $\{u'v'\}\in E$. By symmetry hypothesis,

$$\{\varphi(u')\varphi(v')\} \in E \tag{1}$$

$$\{\varphi \circ \varphi^{-1}(u)\varphi \circ \varphi^{-1}(v)\} \in E$$
⁽²⁾

$$\{uv\} \in E \tag{3}$$

Transitive. Given bijections φ_0 and φ_1 , Construct a bijection $\varphi = \varphi_1 \circ \varphi_0$. Given $\{uv\} \in E$, It follows $\{\varphi_0(u)\varphi_0(v)\} \in E$, and in turn $\{\varphi_1 \circ \varphi_0(u) \circ \varphi_1 \circ \varphi_0(v)\} \in E$. The other way follows analogously.

(ii)

True.

Let X and Y be the two sets such that for any $\{uv\} \in E_G$, $u \in X$ and $v \in Y$. Consider an arbitrary $e \in H$. By (i), $\varphi^{-1}(e) = \{xy\}$ where $x \in X$ and $y \in Y$. It follows $\varphi(x) \in \varphi(X)$ and $\varphi(y) \in \varphi(Y)$. So H is bipartite.

$\mathbf{2}$

 (\leftarrow) . Given G is complete. Let S be any subset of vertices. Consider G - S and let $u, v \in G - S$ be arbitrary. Since G is complete, G - S has the edge $\{uv\}$, and hence connected. It follows S is not a cut-set.

 (\rightarrow) . If G has no cut-set, Then for any $S \subset V$, G - S is connected. Consider $S_{uv} = V - \{uv\}$. Since $G - S_{uv}$ is connected, it has some path $(u, u_1, \ldots, u_{k-1}, v)$, but the graph has only vertices u and v. Therefore $G - S_{uv}$ has the edge $\{uv\}$, and in turn G has $\{uv\}$ also. That concludes G is complete.

- (ii)

(iii)

Not Solved.

Brute-forcing all possible mappings seems non-elegant.

$\mathbf{4}$

False. Here is a counter-example.

