Homework 4

Mostafa Touny

March 4, 2024

Contents

Exercises 2 1 2 2 2 3 3 4 3

Exercises

1

The least path we can construct between x and y is (x) in the case of x = y. So $d(x, y) \ge 0$.

if x = y, then (x) is a valid path, concluding d(x, y) = 0. If d(x, y) = 0 then the graph contains a path (x) = (y), concluding x = y.

Since the graph is undirected, It is clear (v, v_1, \ldots, v_k) is the least vv_k path if and only if $(v_k, v_{k-1}, \ldots, v)$ is the least $v_k v$ path. It follows d(x, y) = d(y, x).

The paths (x, \ldots, y) and (y, \ldots, z) can be concatenated to construct a new path (x, \ldots, z) whose length is d(x, y) + d(y, z). If we considered the minimal-length xz path, Then by definition we get $d(x, z) \leq d(x, y) + d(y, z)$.

$\mathbf{2}$

(i)

By definition ecc(v) = diam(G). So d(u, v) = diam(G). It follows ecc(u) = diam(G) as there is no longer path than the diameter.

(ii)

Fix u and v. Let u_m and v_m be the vertices corresponding to maximum paths for u and v respectively.

Assume for contradiction the difference between $d(u, u_m)$ and $d(v, v_m)$ is greater than 1. WLOG assume $d(u, u_m)$ is the greater. Then there is a path $(u, \ldots u_m)$ whose length is greater than $d(v, v_m)$.

(iii)

3

(i)

Fact. $A^k(i, j)$ is the number of $v_i v_j$ paths of length k.

By definition $d(v_i, v_j)$ is the least length of any path. In other words, least k where $A^k(i, j) > 0$.

(ii)

Consider min $\{k \mid S^k \text{ has some rows with no zeros}\}$. Those rows correspond to vertices C(G).

Consider min $\{k \mid S^k \text{ has no zeros}\}$. Rows with zeros in S^{k-1} correspond to vertices P(G).

$\mathbf{4}$

(i)

Fact. A connected tree of order n has exactly n - 1 edges.

Let n_i denote the order of *i*th connected tree. Then by the *Fact i*th tree has $n_i - 1$ edges. It follows the total number of edges of the forest is $\sum_{i=1}^{k} (n_i - 1) = n - k$.

(ii)

If some edge is not a bridge then a cycle shall exist, contradicting the fact a tree is acyclic.