Homework 5

Mostafa Touny

March 17, 2024

Contents

Exercises 2 1 . <td

Exercises

1

(a). It follows immediately from theorem 3.5, which states a graph G of order n is a tree iff it is connected and has exactly n - 1 edges.

(b). The condition is G is itself a tree. It is sufficient as G is a subgraph of itself. It is necessary as if we considered an arbitrary induced subgraph spanning tree T, Then by definition of spanning, T contains all the vertices of G. So T = G and G is a tree.

$\mathbf{2}$

(a)

Pick a vertex v with maximal degree k. For each neighbour v_1, v_2, \ldots, v_k , We have paths:

$$(v, v_1)$$
$$(v, v_2)$$
$$\dots (v, v_k)$$

Since the graph is finite, By the *well-ordering* principle, There exists maximal paths p_1, p_2, \ldots, p_k such that p_i starts with (v, v_i) . It follows p_i ends with a leaf l_i .

Since the graph is a tree, The paths p_i do not intersect except on v, lest forming a cycle. In other words, leaves l_i are distinct, and hence the k paths do count k leaves.

(b)

We prove it by induction on the tree's order, i.e number of vertices. For the base case, We have |T| = 2. Then T's leaves count L(T) is

$$2 = 2 + \sum_{v \in V(T^{-})} (deg(v) - 2)$$

= 2 + 0

Since T^- is empty.

Induction hypothesis. Assume the statement is true for any T such that $|T| \ge 2$.

Induction step. Consider a tree T where |T| = n + 1. Fix a leaf l and its connected neighbour f in T.

Observe f cannot be a leaf, As otherwise T shall be of size 2, Contradicting our assumption. So f is a non-leaf vertex.

Construct tree T' = T - l. Then by the induction hypothesis

$$L(T') = 2 + \sum_{v \in T'^{-}} (deg(v) - 2)$$

Then

$$|L(T)| = |L(T')| + 1 \tag{1}$$

$$= 2 + \sum_{v \in T'^{-}} (deg_{T'}(v) - 2) + 1$$
(2)

Observe

$$deg_T f = deg_{T'} f + 1 \tag{3}$$

$$deg_T u = deg_{T'} u$$
 For any non-leaf vertex $u \neq f$ (4)

It follows

$$\sum_{v \in T^{-} - f} (deg_T v - 2) = \sum_{v \in T'^{-} - f} (deg'_T v - 2)$$
(5)

By (3) and (5),

$$\sum_{v \in T^{-}} (deg_{T}(v) - 2) = \sum_{v \in T^{-} - f} (deg_{T}(v) - 2) + (deg_{T}(f) - 2)$$
$$= \sum_{v \in T'^{-} - f} (deg_{T'}v - 2) + (deg_{T'}(f) - 2) + 1$$
$$= \sum_{v \in T'^{-}} (deg_{T'}v - 2) + 1$$

Combining that last result with (2), We get

$$|L(T)| = 2 + \left(\sum_{v \in T^{-}} (deg_T(v) - 2) - 1\right) + 1$$
$$= 2 + \sum_{v \in T^{-}} (deg_T(v) - 2) \quad \blacksquare$$

3

Notation. We denote the total weight of a graph by w(G), Which is the summation of all edges weights.

We show if there are two distinct minimum spanning trees T_0 and T_1 , where $w(T_0) = w(T_1) = k$, then a contradiction occurs. Namely the existince of a spanning tree T_2 such that $w(T_2) < k$.

Since T_0 and T_1 are distinct, They do not agree on all edges. WLOG we can select the minimal-weight edge $e_{min} = \{v_1, v_2\}$ in T_0 not in T_1 . Since T_1 is connected, We know there is a path $p_1 = (v_1, \ldots, v_2)$ in T_1 . Fix an edge e' from p_1 . Construct $T_2 = T_1 - e' + e_{min}$.

The added e_{min} does not construct a new cycle. If that were the case, Then T_1 would have had another path $p_2 = (v_1, \ldots, v_2)$, Concluding T_1 has a cycle by combining p_1 and p_2 . In conclusion T_2 is acyclic, i.e a spanning tree.

Recall e_{min} was chosen to be the minimum weight edge. So $w(e_{min}) < w(e')$ and in turn $w(T_2) < w(T_1)$.

4

 (\rightarrow) . Let *e* be an arbitrary bridge. Let *T* be an arbitrary spanning tree of *G*. Assume for contradiction *T* does not contain *e*. By definition there are two vertices in *G*, v_1 and v_2 , which are not connected in G - e. Since $E(T) \subset E(G)$, It follows there is no path either connecting v_1 and v_2 in *T*. Contradiction as *T* spans *G*.

 (\leftarrow) . Let e be an edge appearing in any spanning tree of G.

Consider graph G - e, and fix v_0 in it. Consider the connected component C_0 of G - e containing v_0 . By definition $e \notin C_0$. Let T_0 be the tree spanning C_0 . By hypothesis T_0 does not span the graph G. Call the vertex not covered by it v_1 .

We claim there is no path (v_0, \ldots, v_1) in G - e and hence concluding it is disconnected, and in turn e is a bridge. Assume for contradiction we have the path $p_0 = (v_0, \ldots, v_1)$ in G - e, Then p_0 is in C_0 , and in turn v_1 is connected to v_0 in T_0 . Contradiction.