Graph Theory Homework Series 08 In Groups of 2-4 Students

Keywords: Planar Graphs, Eulers Formula, Kuratowski's Theorem.

Exercise 1 (Partite Graphs). Define the multipartite graph $K_{r_1,r_2,...,r_k} = (V, E)$ where V is the disjoint union of the sets A_1, \ldots, A_k such that $|A_i| = r_i$ and

$$E = \{x_i x_j \mid x_i \in A_i, x_j \in A_j, i \neq j\},\$$

i.e. E contains all possible edges between vertices of different sets.

- (1) Give a necessary and sufficient criterion on r and s such that $K_{r,s}$ is planar.
- (2) Assume k > 2. Give a necessary and sifficient criterion on the r_i such that K_{r_1,r_2,\ldots,r_k} is planar.

3+3 points.

Exercise 2 (Subdivisions). Let G be a any graph and $y \in V(G)$ of degree 2 with $N(y) = \{x, z\}$. Let H := G - y + xz be the graph arising from H by deleting y and all its incident edges and adding the edge e = xz if necessary.

- (a) Show that G is a subdivision of H if and only if xz is not an edge in G.
- (b) Use (a) to show that any graph G is the subdivision of a graph H which itself is not a proper subdivision of any other graph.
- (c) Describe all possible graphs G with $\Delta(G) \leq 2$, which are not a proper subdivision of any other graph.

2+3+(2 Bonus) points.

- **Exercise 3** (Eulers Formula). (a) Let G be a planar, 3-regular graph of order 24. How many regions are in any planar representation of G?
 - (b) Let G be a connected planar graph of order less than 12. Prove that $\delta(G) \leq 4$.

2+3 points.

Lecturer: Isabel Müller	AUC Cairo
Deadline: 07.04.2024	Spring Term 2024
TA: Dina Saleh	Handin: Gradescope

Exercise 4. Consider the graph G as given below. Is G planar? Prove your answer.

4 points.

