Homework 08

Mostafa Touny

April 7, 2024

Contents

Exercises 2 1 2 2 3 3 4 4 4

Exercises

Lemma 1.

- If a graph is a subdivision of $K_{3,3}$, then it contains 3 vertices of deg 3.
- If a graph is a subdivision of K_5 , then it contains 5 vertices of deg 4.

Corollary 2. If a graph neither has a subgraph with 3 vertices of deg 3, nor a subgraph with 5 vertices of deg 4, Then it is planar.

1

(1). $K_{r,s}$ is not planar $\leftrightarrow r \geq 3$ and $s \geq 3$.

 (\leftarrow) . Clear as $K_{r,s}$ shall contain $K_{3,3}$ as a subgraph.

 (\rightarrow) . We show the contrapositive. Given r < 3 or s < 3, The premise of *Corollary 2* is clearly satisfied, and hence $K_{r,s}$ is planar.

(2). K_{r_1,r_2,\ldots,r_k} is not planar \leftrightarrow there are consecutive $r_i \geq 3$ and $r_{i+1} \geq 3$. Similar to (1).

$\mathbf{2}$

(a).

(\leftarrow) Trivial as by definition $\{\{x, y\}, \{y, z\}\}$ is a subdivision of $\{\{x, z\}\}$, resulting in graph G from H.

Fact 3. For any new vertices a and b resulting from subdivisions, incident to existing vertices x and z respectively, $a \neq b$, prohibiting $\{\{x, a\}, \{a, z\}\}$.

Fact 4. Newly added edges from subdivisions are incident to a newly added vertex and to an existing vertex.

 (\rightarrow) . We are given G is a subdivision of H. Call the sequence of subdivisions S_1, S_2, \ldots, S_k , and the corresponding graphs G_0, G_1, \ldots, G_k , whereby $G_0 = H$ and $G_k = G$.

Necessarily some S_i is on edge $\{xz\}$. Otherwise by *Fact 3* we won't have $\{\{x, y\}, \{y, z\}\}$ in *G*. Clearly a subdivision on $\{xz\}$ is unique, Call it S_m .

By *Fact* 4 a newly added edge cannot be incident to two existing vertices. It follows edge $\{xz\}$ is not in any G_j for $j \ge m$. In particular $G_k = G$ has no edge $\{xz\}$. \blacksquare (b).

Given a graph G_i , If $\{xy\}, \{yz\} \in E(G_i)$ and $\{xz\} \notin E(G_i)$, Construct $G_{i+1} = G_i - \{xy\} - \{yz\} + \{xz\}$. Now given an arbitrary graph G keep applying this procedure until it can no longer be applied. Since the graph has finite edges, The process terminates. So we get G_0, G_1, \ldots, G_k where $G_0 = G$ and G_{i+1} is a subdivision of G_i . Set $H = G_k$. Now H is not a proper subdivision of any other graph by (a)

(c).

Given a graph H is not a subdivision of any other graph, and following the same line of reasoning of (b), For any $\{xy\}, \{yz\} \in E(H), \{xz\} \in E(H)$. Assuming H is connected,

Case $\Delta(G) = 0$. Then $G = K_1$.

Case $\Delta(G) = 1$. Then $G = K_2$.

Case $\Delta(G) = 2$. Then $G = K_3$, As we must have a vertex of deg 2, and by hypothesis the endpoints are connected by an edge. The existince of any additional edge shall construct a vertex with deg 3.

If H is not connected, Then each of its components are either K_1, K_2 , or K_3 .

3

(a).

$$2m = \sum \deg v$$
$$= 24 \cdot 3$$
$$m = 12 \cdot 3 = 36$$
$$n - m + r = 2$$
$$12 - 36 + r = 2$$
$$r = 26$$

(b). Assume for contradiction $\delta(G) \geq 5$. Then

$$m = \frac{1}{2} \sum \deg v \ge \frac{5}{2}n$$

By theorem 5.15

$$m \le 3(n-2) = 3n-6$$

It suffices to show $3n - 6 < \frac{5}{2}n$ to obtain a contradiction. Given n < 12,

$$n + 5n - 12 < 12 + 5n - 12$$

 $6n - 12 < 5n$
 $3n - 6 < \frac{5}{2}n$

$\mathbf{4}$

Not-planar as it contains a subdivision of K_5 .

