Chapter 1

Mostafa Touny

May 19, 2024

Contents

Ex	Exercises																2														
	1																														2
	2					•							•			•							•	•		•		•			2

Exercises

1

We prove by strong induction the statement: For any $m \ge 0$, If G is a graph with m edges and n vertices, Then

- $P_G(k) = a_0 + a_1 k^1 + \dots + a_n k^n$, For some polynomial representation.
- $a_0 = 0$
- $a_n = 1$

Base case. m = 0. Then $G = E_n$, the empty graph with n vertices. By combinatorics we know $P_G(k) = k^n = 0 + (1)k^n$.

Induction hypothesis. Assume the statement holds for any graph with at most m edges for $m \ge 0$.

Induction step. For a graph G with m + 1 edges and n vertices, Note G has some edge e and the graphs G - e and G/e have at most m edges. By *Birkhoff* and the *induction hypothesis*,

$$P_G(k) = P_{G-e}(k) - P_{G/e}(k)$$

= $(0 + a_1k^1 + \dots + (1)k^n) - (0 + a'_1k^1 + \dots + (1)k^{n-1})$
= $0 + (a_1 - a'_1)k^1 + \dots + (a_{n-1} - 1)k^{n-1} + (1)k^n \blacksquare$

$\mathbf{2}$

(i). For a maximum matching M, if adding an additional edge results in a valid matching, then M won't be maximum. Hence it is maximal.

(ii). For a perfect matching M let k = |M|. If there were a matching with more than k edges, then that matching shall cover more than 2k vertices. That implies the graph contains more than 2k vertices, and as a result M does not cover all graph's vertices, so not perfect.

(iii). Consider the set $AM = \{M \mid M \text{ is a matching of } G\}$. Since a matching M is a subgraph, and there are finitely many subgraphs, it follows AM is finite. Moreover it has a maximum edge size matching.

(iv). Call the perfect matching M_0 and let $k_0 = |M_0|$. By definition it covers all vertices of the graph, and in turn G has exactly $2k_0$ vertices, Concluding |G| is even.

It suffices to prove, If an arbitrary matching M is not perfect, Then it is not maximum. By definition M covers less than $2k_0$ vertices. Then M has less than k_0 edges, So $|M| < |M_0|$. Since M_0 is a valid matching, It follows M is not maximum. (1). This is exactly the definition of matching X into Y.

(2). We reduce it to Hall's Marriage. Let $X = \{S_i \mid i \in I\}$ and $Y = \bigcup_{i \in I} S_i$. Now the problem of system of distinct representatives is equivalent to matching hall of X into Y. In other words, Matching childs injectively to gifts is equivalent to matching S_i to representatives. By Hall's Marriage Theorem, This is possible if and only if $|X| \leq |N(X)|$. However, |X| = |I| and N(X) = Y. Therefore system of distinct representatives is possible iff $|I| \leq |\bigcup_{i \in I} S_i|$.