Chapter 11

Mostafa Touny

May 27, 2024

Contents

Exercises 2 1 . <td

Exercises

1

We know a maximum matching M and a minimum covering C do both exist, where |M| = |C|.

Observe by definition all edges E(G) are exactly the edges incident to cover C. Clearly each edge distinctly contributes to the degrees sum. It follows $\sum_{v \in C} \deg v \ge |E(G)|$.

Hence

$$\Delta(G) \ |M| = \Delta(G) \ |C| = \sum_{v \in C} \Delta(G) \ge \sum_{v \in C} \deg v \ge |E(G)|$$

$\mathbf{2}$

We reduce the problem to theorem 7.15 and show for any $I \subset \{1, 2, \ldots, r\}, |I| \leq |\bigcup_i S_i|$.

Take a subset $I = \{\pi_1, \pi_2, \ldots, \pi_m\} \subset \{1, 2, \ldots, r\}$ where $0 \leq m \leq r$. If m = 0 then trivially $|I| = 0 = |\phi| = |\bigcup_i S_i|$. Consider $m \geq 1$. Since cardinalities of S_{π_i} are all positive and distinct, By the *Pigeon Hole Principle*, m subsets cannot be assigned cardinalities between 1 and m - 1. Therefore there exists a subset S with $|S| \geq m$. It follows $|\bigcup_i S_{\pi_i}| \geq |S| \geq m = |I|$.

$\mathbf{4}$

Claim. $R(a,b) \leq R(b,a)$

We know there is a $K_{R(b,a)}$ such that any edge 2-coloring either has a red K_b or a green K_a as subgraphs.

But if it has a red K_b , then trivially it has a green k_b , and if it has a green K_a , then trivially it has a red K_a .

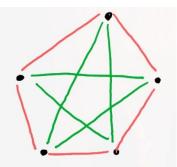
Then there is a $K_{R(b,a)}$ such that any edge 2-coloring either has a red K_a or a green K_b . Hence, $R(a,b) \leq R(b,a)$.

By symmetry $R(b, a) \leq R(a, b)$, Concluding R(a, b) = R(b, a).

$\mathbf{5}$

Claim. R(3,3) > 5.

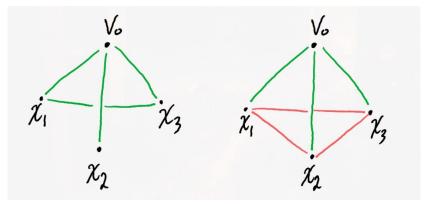
The following edge colouring of K_5 neither has a red K_3 nor a green K_3 .



Observe taking any 3 vertices, 2 of them will be adjacent by a red edge, and 2 of them will be adjacent by a green edge.

Claim. $R(3,3) \le 6$.

Fix vertex v_0 , and consider any edge colouring. Since $deg v_0 = 5$, Necessarily 3 of which are of the same colour. WLOG assume the colour is green. Call those 3 vertices x_1, x_2, x_3 . As in the following figure we have two cases:



Either x_1, x_2, x_3 form a red K_3 , or some edge of them is green, for example edge $\{x_1, x_3\}$. Therefore, Either the graph contains a *red* K_3 or a *green* K_3 .