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Problem. 1

Definition. 1 simplest-fraction
We call xy a simplest-fraction when it is in its simplest form. i.e cannot be reduced by

eliminating a common fraction.

Fact. 2 If there are no common factors between x and y, Then x
y is a simplest-fraction.

Lemma. 3 If xy is a simplest-fraction, Then so is x2

y2

Observe any common factor among the numerator and denominator is going to neces-
sarily divide both x and y.

Theorem. 4 Main Problem

It’s possible to set
√

m
n = a

b
where a

b
is a simplest-fraction. On m

n = a2

b2
It follows

by fact 2 and lemma 3, Both m
n and a2

b2
are simplest-fractions. By uniqueness of such

forms, m = a2 and n = b2. QED

Problem. 2

Assume for the sake of contradiction, There’s an order < defined in the complex field,
Which turns it into an ordered field.

By definition, It’s an ordered set also, and hence the following fact applies to it: For
any s, r ∈ F exactly one of (i) s = r, (ii) s < r, (iii) s > r is true. Particularly we have
exactly one of the following cases to be true:

(i)
√
−1 = 0

Then −1 =
√
−1

√
−1 = 0 · 0 = 0. A contradiction.

(ii)
√
−1 > 0

Then −1 =
√
−1

√
−1 >

√
−1 · 0 = 0. Also 1 < 0 and

√
−1 =

√
−1 · 1 <

√
−1 · 0 = 0.

A contradiction.

(iii)
√
−1 < 0

Then −1 =
√
−1

√
−1 >

√
−1 · 0 = 0. Also 1 < 0 and

√
−1 =

√
−1 · 1 >

√
−1 · 0 = 0.

A contradiction.

Problem. 3

The proof of complex numbers being an ordered set follows immediately by the obvi-
ous/natural properties of real numbers’ order and enumerating cases.
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A counter-example is given to the claim, that the orderd-set of complex numbers have
the least-upper-bound property. Let E = { (1/x, y) | x > 1 }, which is clearly bounded
by any element of the set B = { (1, y) | y ∈ R }. But set B has no least element.

Problem. 4

a

f(0) = f(0 + 0) = f(0) + f(0). Then f(0) − f(0) = f(0) + f(0) − f(0), implying
0 = f(0).

f(1) = f(1 · 1) = f(1) · f(1). Let x = f(1), Then x = x2 which implies x(x − 1) = 0,
and finally either x = 0 or x = 1.

b

Lemma. 1 f(n) = nf(1)
f(n) = f(n− 1 + 1) = f(n− 1) + f(1), implying f(n) = f(0) + n · f(1).

Lemma. 2 f(n/m) = (n/m)f(1)
f(n/m) = f(n · 1/m) = n · f(1/m) · f(1). But f(1) = f(1/m + 1/m . . . + 1/m) =
f(1/m) + f(1/m) + . . .+ f(1/m) = m · · · f(1/m), which leads to f(1/m) = f(1)/m.

The final conclusion follows immediately by cases of f(1) being equal to 0 or 1.

c

Lemma. 1 f(x) ≥ 0 if x ≥ 0
Since x is a non-negative, we know

√
n exists. Observe f(x) = f(

√
x ·

√
x) = f(

√
x) ·

f(
√
x). But any square cannot be a negative number.

Theorem. 2 Main Problem
If x > y, Then x−y > 0. By Lemma. 1, f(x−y) ≥ 0. But f(x−y) = f(x)+f((−1)·y) =
f(x)− f(y).

Note. This problem was solved by the aid of good friends. See the coversation below:
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c

If x > y, Then the decimal expansion of

x =
x0

100
+

x1

101
+

x2

102
+ . . .+

xk

10k

y =
y0
100

+
y1
101

+
y2
102

+ . . .+
yk
10k

has some xi > yi. Assume i is the least such index.

It follows by b

f(x) = f(1)
[
f(

x0

100
) + f(

x1

101
) + f(

x2

102
) + . . .+ f(

xk

10k
)
]
= f(1)

[ x0

100
+

x1

101
+

x2

102
+ . . .+

xk

10k

]
f(y) = f(1)

[
f(

y0
100

) + f(
y1
101

) + f(
y2
102

) + . . .+ f(
yk
10k

)
]
= f(1)

[ y0
100

+
y1
101

+
y2
102

+ . . .+
yk
10k

]
Considering both cases of f(1) from a, The inequality f(x) ≥ f(y) follows.

Note even if x or y were periodic, i.e the expansion does not end, some sufficiently large
k would still exist fulfilling our construction.
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d

Case. 1 f(1) = 0
For any real number x we can pick-up two rational numbers q0 and q1 such that q0 ≤
x ≤ q1, But we know f(q0) = f(q1) = 0 from b, and f(q0) ≤ f(x) ≤ f(q1) from c.

Case. 2 f(1) = 1
For any real-number x, We know there are rational numbers q1a, q2a, . . . which arbitrarily
get closer to x from above, and similarly we know there are rational numbers q1b, q2b, . . .
which arbitrarily get closer to x from below. So we have qib ≤ x ≤ qia for i = 1, 2, . . ..

From c we get f(qib) ≤ f(x) ≤ f(qia), and by b qib ≤ f(x) ≤ qia, which suffices to prove
f(x) = x.
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