Problem-Set 01

Mostafa Touny

June 18, 2022

Contents	
Problem. 1	2
Problem. 2	2
Problem. 3	3
Problem. 4	5

Problem. 1

Definition. 1 simplest-fraction

We call $\frac{x}{y}$ a simplest-fraction when it is in its simplest form. i.e cannot be reduced by eliminating a common fraction.

Fact. 2 If there are no common factors between x and y, Then $\frac{x}{y}$ is a simplest-fraction.

Lemma. 3 If $\frac{x}{y}$ is a simplest-fraction, Then so is $\frac{x^2}{y^2}$

Observe any common factor among the numerator and denominator is going to necessarily divide both x and y.

Theorem. 4 Main Problem

It's possible to set $\sqrt{\frac{m}{n}} = \frac{a}{b}$ where $\frac{a}{b}$ is a simplest-fraction. On $\frac{m}{n} = \frac{a^2}{b^2}$ It follows by fact 2 and lemma 3, Both $\frac{m}{n}$ and $\frac{a^2}{b^2}$ are simplest-fractions. By uniqueness of such forms, $m = a^2$ and $n = b^2$. QED

Problem. 2

Assume for the sake of contradiction, There's an order < defined in the complex field, Which turns it into an ordered field.

By definition, It's an ordered set also, and hence the following fact applies to it: For any $s, r \in F$ exactly one of (i) s = r, (ii) s < r, (iii) s > r is true. Particularly we have exactly one of the following cases to be true:

(i) $\sqrt{-1} = 0$ Then $-1 = \sqrt{-1}\sqrt{-1} = 0 \cdot 0 = 0$. A contradiction. (ii) $\sqrt{-1} > 0$ Then $-1 = \sqrt{-1}\sqrt{-1} > \sqrt{-1} \cdot 0 = 0$. Also 1 < 0 and $\sqrt{-1} = \sqrt{-1} \cdot 1 < \sqrt{-1} \cdot 0 = 0$. A contradiction.

(iii) $\sqrt{-1} < 0$ Then $-1 = \sqrt{-1}\sqrt{-1} > \sqrt{-1} \cdot 0 = 0$. Also 1 < 0 and $\sqrt{-1} = \sqrt{-1} \cdot 1 > \sqrt{-1} \cdot 0 = 0$. A contradiction.

Problem. 3

The proof of complex numbers being an ordered set follows immediately by the obvious/natural properties of real numbers' order and enumerating cases. A counter-example is given to the claim, that the orderd-set of complex numbers have the least-upper-bound property. Let $E = \{ (1/x, y) \mid x > 1 \}$, which is clearly bounded by any element of the set $B = \{ (1, y) \mid y \in \mathcal{R} \}$. But set B has no least element.

Problem. 4

a

f(0) = f(0+0) = f(0) + f(0). Then f(0) - f(0) = f(0) + f(0) - f(0), implying 0 = f(0).

 $f(1) = f(1 \cdot 1) = f(1) \cdot f(1)$. Let x = f(1), Then $x = x^2$ which implies x(x - 1) = 0, and finally either x = 0 or x = 1.

b

Lemma. 1 f(n) = nf(1)f(n) = f(n-1+1) = f(n-1) + f(1), implying $f(n) = f(0) + n \cdot f(1)$.

Lemma. 2 f(n/m) = (n/m)f(1) $f(n/m) = f(n \cdot 1/m) = n \cdot f(1/m) \cdot f(1)$. But $f(1) = f(1/m + 1/m \dots + 1/m) = f(1/m) + f(1/m) + \dots + f(1/m) = m \cdots f(1/m)$, which leads to f(1/m) = f(1)/m.

The final conclusion follows immediately by cases of f(1) being equal to 0 or 1.

С

Lemma. 1 $f(x) \ge 0$ if $x \ge 0$ Since x is a non-negative, we know \sqrt{n} exists. Observe $f(x) = f(\sqrt{x} \cdot \sqrt{x}) = f(\sqrt{x}) \cdot f(\sqrt{x})$. But any square cannot be a negative number.

Theorem. 2 Main Problem

If x > y, Then x - y > 0. By Lemma. 1, $f(x - y) \ge 0$. But $f(x - y) = f(x) + f((-1) \cdot y) = f(x) - f(y)$.

Note. This problem was solved by the aid of good friends. See the coversation below:

Yes for c too. The crucial stepping stone to c is that f preserves the property of being nonnegative. (Hint: the nonnegative reals are exactly the ones that have square roots). But that's not really a "special toolbox from analysis". (edited)

С

If x > y, Then the decimal expansion of

$$x = \frac{x_0}{10^0} + \frac{x_1}{10^1} + \frac{x_2}{10^2} + \dots + \frac{x_k}{10^k}$$
$$y = \frac{y_0}{10^0} + \frac{y_1}{10^1} + \frac{y_2}{10^2} + \dots + \frac{y_k}{10^k}$$

has some $x_i > y_i$. Assume *i* is the least such index.

It follows by b

$$f(x) = f(1) \left[f(\frac{x_0}{10^0}) + f(\frac{x_1}{10^1}) + f(\frac{x_2}{10^2}) + \dots + f(\frac{x_k}{10^k}) \right] = f(1) \left[\frac{x_0}{10^0} + \frac{x_1}{10^1} + \frac{x_2}{10^2} + \dots + \frac{x_k}{10^k} \right]$$

$$f(y) = f(1) \left[f(\frac{y_0}{10^0}) + f(\frac{y_1}{10^1}) + f(\frac{y_2}{10^2}) + \dots + f(\frac{y_k}{10^k}) \right] = f(1) \left[\frac{y_0}{10^0} + \frac{y_1}{10^1} + \frac{y_2}{10^2} + \dots + \frac{y_k}{10^k} \right]$$

Considering both cases of f(1) from a, The inequality $f(x) \ge f(y)$ follows.

Note even if x or y were periodic, i.e the expansion does not end, some sufficiently large k would still exist fulfilling our construction.

Case. 1 f(1) = 0

For any real number x we can pick-up two rational numbers q_0 and q_1 such that $q_0 \le x \le q_1$, But we know $f(q_0) = f(q_1) = 0$ from b, and $f(q_0) \le f(x) \le f(q_1)$ from c.

Case. 2 f(1) = 1

For any real-number x, We know there are rational numbers q_{1a}, q_{2a}, \ldots which arbitrarily get closer to x from above, and similarly we know there are rational numbers q_{1b}, q_{2b}, \ldots which arbitrarily get closer to x from below. So we have $q_{ib} \leq x \leq q_{ia}$ for $i = 1, 2, \ldots$

From c we get $f(q_{ib}) \leq f(x) \leq f(q_{ia})$, and by $b q_{ib} \leq f(x) \leq q_{ia}$, which suffices to prove f(x) = x.