Problem-Set 02

Mostafa Touny

December 4, 2022

Contents

Problem. 1 2
Problem. 2 3
Problem. 3 4
$\begin{array}{ll}\text { Problem. } 4 & 7\end{array}$

Problem. 1

We prove each axiom as listed by Rudin in page 5.
A1 $\left(a_{0}+a_{1}\right)+\sqrt{2}\left(b_{0}+b_{1}\right) \in \mathcal{Q}(\sqrt{2})$, As $\left(a_{0}+a_{1}\right),\left(b_{0}+b_{1}\right) \in \mathcal{Q}$.
A2 Follows immediately by properties of \mathcal{Q}.
A3 Follows immediately by properties of \mathcal{Q}.
A4 $0_{\mathcal{Q}(2)}$ here is the number $0+\sqrt{2} 0=0_{\mathcal{R}}$.
A5 For an $x_{\mathcal{Q}(2)},-x_{\mathcal{Q}(2)}=-a+\sqrt{2}(-b)$.
M1 The product is $\left(a_{0} a_{1}+2 b_{0} b_{1}\right)+\sqrt{2}\left(a_{0} b_{1}+a_{1} b_{0}\right)$, Where the formed a and b are in \mathcal{Q}.

M2 Following properties of \mathcal{Q}, The product we formed in $M 1$ is the same in cases of $x y$ and $y x$.

M3 Following properties of \mathcal{Q}, The product we formed in $M 1$ is the same in cases of $(x y) z$ and $x(y z)$.

M4 $1_{\mathcal{Q}(\sqrt{2})}$ here is $1_{\mathcal{R}} \neq 0_{\mathcal{R}}=0_{\mathcal{Q}(2)}$.
M5 If $x_{\mathcal{Q}(\sqrt{2})} \neq 0_{\mathcal{Q}(2)}=0+\sqrt{2} \cdot 0$, Then we know either $a \neq 0$ or $b \neq 0$, and hence $x_{\mathcal{Q}(\sqrt{2})}=a+b \sqrt{2} \neq 0$. Define $x_{\mathcal{Q}(\sqrt{2})}^{-1}=\frac{1}{a+b \sqrt{2}}$. What is remaining is to show $\frac{1}{a+b \sqrt{2}} \in \mathcal{Q}(2)$ by a multiplication by its conjugate. Observe:

$$
\begin{aligned}
& \frac{1}{a+b \sqrt{2}} \\
= & \frac{1}{a+b \sqrt{2}} \cdot \frac{a-b \sqrt{2}}{a-b \sqrt{2}} \\
= & \frac{a-b \sqrt{2}}{a^{2}+2 b^{2}}=\left(\frac{a}{a^{2}+2 b^{2}}\right)+\left(\frac{-b}{a^{2}+2 b^{2}}\right) \sqrt{2}
\end{aligned}
$$

And clearly $\left(\frac{a}{a^{2}+2 b^{2}}\right),\left(\frac{-b}{a^{2}+2 b^{2}}\right) \in \mathcal{Q}$.
D Follows by a trivial algebra.

Problem. 2

Let's look at the special case of $z=(x, 0)$. Then for any $r>0$, there exists a complex number $w=(x / r, 0)$, such that $r w=z$.

From now on we focus on $z=(x, y)$ assuming $y \neq 0$. Before proceeding, we develop a central lemma.

Lemma. 1 For any complex number $w=(a, b),|w|=1 \leftrightarrow a^{2}+b^{2}=1$.
Follows immediately by setting $w \cdot \bar{w}=1$ and multiplying.
Lemma. 2 Given any x and $y \neq 0$, Finding reals r, a, b such that $r \cdot a=x, r \cdot b=y$ satisfies $z=(x, y)=r \cdot(a, b)=r w$ Follows immediately by a trivial algebra.

Theorem. 3 Main Problem
Now we combine Lemma 1 and Lemma 2 to satisfy both requirements by forming a combined system of equations, Given any $z=(x, y)$ where $y \neq 0$.

$$
\begin{aligned}
r \cdot a & =x \\
r \cdot b & =y \\
a^{2}+b^{2} & =1
\end{aligned}
$$

It can be solved by substitution where:

$$
\begin{aligned}
a & =\sqrt{1-b^{2}} \\
r & =y / b \quad \text { valid as b isn't zero } \\
3 / b \cdot \sqrt{1-b^{2}} & =x
\end{aligned}
$$

Note $b \neq 0$ lest $r \cdot b=r \cdot 0=0=y$, Contradicting our assumption.
The system uniquely determines the values

$$
\begin{aligned}
b & =\frac{3}{\sqrt{x^{2}+9}} \\
r & =\frac{y}{3} \cdot \sqrt{x^{2}+9} \\
a & =\sqrt{1-\frac{9}{x^{2}+9}}
\end{aligned}
$$

Problem. 3

a

We show if arbitrary $p \in E^{o}$ then p is an interior of E^{o}. By definition p is an interior of E. So $N_{r_{0}}(p) \subset E$ for some $r_{0}>0$. Let $r_{1}=r_{0} / 2$ and $h=r_{0}-r_{1}$. It suffices to show $N_{r_{1}}(p) \subset E^{o}$.

Consider $N_{h}\left(p^{\prime}\right)$ for any $p^{\prime} \in N_{r_{1}}(p)$. Through the picture it is clear this new neighbourhood shall be bounded by $N_{r_{0}}(p)$ and hence falls completely within E. That shows $p^{\prime} \in E^{o}$ and in turn completes our proof.

In greater details, Observe $\forall q \in N_{h}\left(p^{\prime}\right), d(q, p) \leq d\left(q, p^{\prime}\right)+d\left(p^{\prime}, p\right)<h+r_{1}=\left(r_{0}-\right.$ $\left.r_{1}\right)+r_{1}=r_{0}$, and hence $q \in N_{r_{0}}(p) \subset E$.

b

(\leftarrow) Trivial by a.
(\rightarrow) Trivially $E^{o} \subset E$. By hypothesis, The definition of open E immediately concludes $E \subset E^{o}$.

C

Any $p \in G$ is an interior point of G by definition. So there is a neighbourhood $N_{r_{0}}(p) \subset$ G for some $r_{0}>0$. But we know $G \subset E$, So $N_{r_{0}}(p) \subset E, p$ is an interior point of E.

e

I guess Yes. We struggled with a formal proof though.

Problem. 4

Definition. 1 Given a point $p \in X$, Define $V_{p}=\{x>p \mid[p, x] \subset X\} \cup\{x<$ $p \mid[x, p] \subset X\}$.

Remark. $2 V_{p}$ constitutes a largest segment (a, b), Given X is an open-set.
Assuming $V_{p}=(a, b]$ derives an immediate contradiction as b won't be an interior point of X.

A more rigorous argument for showing V_{p} is a segment can be made by constructing a segment (inf V_{p}, sup V_{p}) but for brevity we ignore it.

Lemma. 3 Given an open-set X and some $V_{p} \subset X$, For any $q \neq p$, Either $V_{p}=V_{q}$ or $V_{p} \cap V_{q}=\phi$.
Easily proven by considering the equivalent logical form of $V_{p} \cap V_{q} \neq \phi \rightarrow V_{p}=V_{q}$.
Lemma. 4 Given a non-empty open-set X and some $V_{p} \subset X, X_{1}=X-V_{p}$ is either empty or a non-empty open-set.
If $V_{p}=X$ then X_{1} is empty. Consider V_{p} as a strict or proper subset of X. Then X_{1} is non-empty.

We show now X_{1} is an open-set. Let q be an arbitrary point of X_{1}, Then also $q \in X$. Since X is an open-set we know there's some neighbour $N_{r 0}(q) \subset X$. Clearly $N_{r 0}(q) \subset$ V_{q}. By Lemma 3 and since $q \notin V_{p}$, It follows $N_{r 0}(q) \cap V_{p}=\phi$. So $N_{r 0}(q) \subset X_{1}$ and q is an interior point of X_{1}.

Corollary. 5 Countable $\left\{V_{i}\right\}$
Follow the same procedure of Lemma 4 but let the taken point p_{i} to be a rational number. Take some real number z_{i} in non-empty X_{i}; As it is interior there is a neighbour such that for any q where $d\left(z_{i}, q\right)<r_{0}$ for some $r_{0}>0, q \in X$. By the density of rational numbers, there is a rational p_{i} which satisfies $d\left(z_{i}, p_{i}\right)<r_{0}$. Hence $p_{i} \in X_{i}$.

We now know every distinct $V_{p_{i}}$ corresponds to a distinct rational number p_{i}. So the cardinality of $\left\{V_{p_{i}}\right\}$ is at most countable.

Theorem. 6 Main Problem
Following the procedure of Lemma 4 and by Corollary 5 we can keep constructing $V_{p_{1}}$, $V_{p_{2}}$,..etc, which in turn are at most countable. There are two cases:

- (i) We reach some empty X_{i}, So $\left\{V_{i}\right\}$ is finite. Or
－（ii）We do not ever reach an empty X_{i} ，and $\left\{V_{i}\right\}$ is countable．
Note．I received the following support before being able to solve the problem．I admit it was totally unlikely to think of the formulation $(q-\delta, q+\epsilon) \subset X$ on my own．I admit the problem is completely spoiled．

```
                        彩 Today at 9:05 PM
    I was insinuating that the construction of bigger and bigger intervals is a good idea.
    Pick a rational in your open set. What's the largest interval you can put around it without leaving your set?
    (9) Pick a rational in your open set. What's the largest interval you can put around it without leaving your set?
    Mostafa Touny Today at 9:07 PM
    I am not aware of any mathematical operation that generates a largest interval given an element of it
    @@Mostafa Touny I am not aware of any mathematical operation that generates a largest interval given an element of it
        黄 Today at 9:08 PM
    Try to construct it with the operations you know
    4. Try to construct it with the operations you know
    Mostafa Touny Today at 9:10 PM
    Do I need to pick-up another rational number, or only one suffices?
    Since every point of an open-set is interior, we know there's a segment (a_0, b_0) containing the rational number r_0.
    Can we just define (a,b) to be the largest interval containing r_0?
    @@Mostafa Touny Do I need to pick-up another rational number, or only one suffices?
            煖 Today at 9:12 PM
    If q is that rational number then you can put an interval around q by making it a bit smaller, say q-\delta for some \delta>0 and a bit bigger, say
    q+\varepsilon for some \varepsilon>0. That's all you need. Then you can use a set operation
    9. If q is that rational number then you can put an interval around q by making it a bit smaller, say q-\delta for some \delta>0 and a bit bigger, say q+\varepsilon f...
    Mostafa Touny Today at 9:16 PM
    You mean forming a radius around q where numbers considered do fall within that radius? (edited)
        咸 Today at 9:16 PM
    No, not a radius.
    It's not going to have equal lengths on both sides
    Mostafa Touny Today at 9:20 PM
    Let the open set }X\mathrm{ be }X=(0,1)\cup(2,3
    we selected a rational q=3/4 in (0,1)
    we wish to form the largest interval containing q, which is (0,1)
    How are you sure q}q+\varepsilon\mathrm{ will be bounded by 1?
惑 Today at 9:21 PM
You can require it．
It is not the case if you do not require it
In particular，you want to require the numbers to satisfy \((q-\delta, q+\varepsilon) \subseteq X\)
Mostafa Touny Today at 9：23 PM
In the general case we don＇t know the boundaries of open－set X
```


雾 Today at 9：23 PM

```
Did my formulation mention them？
If it didn＇t then you don＇t need to know them．
```

Mostafa Touny Today at 9:42 PM
for $p \neq q$ we have either $V_{-} q=V_{-} p$ or $V_{-} q \cap V_{-} p=\varnothing$.
I guess that enables us to conclude $\mathrm{X}_{-} \mathrm{i}=\mathrm{X}_{-} \mathrm{i}-1-\mathrm{S}_{-} \mathrm{i}-1$ is either

- empty, or
- non-empty open-set
but never non-open. right?
(3)

霜 Today at 9:43 PM
I'm not sure how you want to conclude that X_i is open from that

Mostafa Touny Today at $9: 43$ PM
So you mean X_i might be a closed non-empty set?
俞 Today at 9:44 PM
No, I just don't see how the conclusion follows from this particular premise

