Problem-Set 02

Mostafa Touny

December 4, 2022

Contents	
Problem. 1	2
Problem. 2	3
Problem. 3	4
Problem. 4	7

Problem. 1

We prove each axiom as listed by *Rudin* in page 5.

A1 $(a_0 + a_1) + \sqrt{2}(b_0 + b_1) \in \mathcal{Q}(\sqrt{2})$, As $(a_0 + a_1), (b_0 + b_1) \in \mathcal{Q}$.

A2 Follows immediately by properties of Q.

A3 Follows immediately by properties of Q.

A4 $0_{\mathcal{Q}(2)}$ here is the number $0 + \sqrt{2} \ 0 = 0_{\mathcal{R}}$.

A5 For an $x_{Q(2)}, -x_{Q(2)} = -a + \sqrt{2}(-b).$

M1 The product is $(a_0a_1 + 2b_0b_1) + \sqrt{2}(a_0b_1 + a_1b_0)$, Where the formed a and b are in Q.

M2 Following properties of \mathcal{Q} , The product we formed in M1 is the same in cases of xy and yx.

M3 Following properties of \mathcal{Q} , The product we formed in M1 is the same in cases of (xy)z and x(yz).

M4 $1_{\mathcal{Q}(\sqrt{2})}$ here is $1_{\mathcal{R}} \neq 0_{\mathcal{R}} = 0_{\mathcal{Q}(2)}$.

M5 If $x_{\mathcal{Q}(\sqrt{2})} \neq 0_{\mathcal{Q}(2)} = 0 + \sqrt{2} \cdot 0$, Then we know either $a \neq 0$ or $b \neq 0$, and hence $x_{\mathcal{Q}(\sqrt{2})} = a + b\sqrt{2} \neq 0$. Define $x_{\mathcal{Q}(\sqrt{2})}^{-1} = \frac{1}{a + b\sqrt{2}}$. What is remaining is to show $\frac{1}{a + b\sqrt{2}} \in \mathcal{Q}(2)$ by a multiplication by its conjugate. Observe:

$$\frac{1}{a+b\sqrt{2}} = \frac{1}{a+b\sqrt{2}} \cdot \frac{a-b\sqrt{2}}{a-b\sqrt{2}} = \frac{a-b\sqrt{2}}{a^2+2b^2} = (\frac{a}{a^2+2b^2}) + (\frac{-b}{a^2+2b^2})\sqrt{2}$$

And clearly $(\frac{a}{a^2+2b^2}), (\frac{-b}{a^2+2b^2}) \in \mathcal{Q}.$

D Follows by a trivial algebra.

Problem. 2

Let's look at the special case of z = (x, 0). Then for any r > 0, there exists a complex number w = (x/r, 0), such that rw = z.

From now on we focus on z = (x, y) assuming $y \neq 0$. Before proceeding, we develop a central lemma.

Lemma. 1 For any complex number w = (a, b), $|w| = 1 \leftrightarrow a^2 + b^2 = 1$. Follows immediately by setting $w \cdot \overline{w} = 1$ and multiplying.

Lemma. 2 Given any x and $y \neq 0$, Finding reals r, a, b such that $r \cdot a = x, r \cdot b = y$ satisfies $z = (x, y) = r \cdot (a, b) = rw$ Follows immediately by a trivial algebra.

Theorem. 3 Main Problem

Now we combine Lemma 1 and Lemma 2 to satisfy both requirements by forming a combined system of equations, Given any z = (x, y) where $y \neq 0$.

$$r \cdot a = x$$
$$r \cdot b = y$$
$$a^2 + b^2 = 1$$

It can be solved by substitution where:

$$a = \sqrt{1 - b^2}$$

$$r = y/b \quad \text{valid as b isn't zero}$$

$$3/b \cdot \sqrt{1 - b^2} = x$$

Note $b \neq 0$ lest $r \cdot b = r \cdot 0 = 0 = y$, Contradicting our assumption.

The system uniquely determines the values

$$b = \frac{3}{\sqrt{x^2 + 9}}$$
$$r = \frac{y}{3} \cdot \sqrt{x^2 + 9}$$
$$a = \sqrt{1 - \frac{9}{x^2 + 9}}$$

Problem. 3

a

We show if arbitrary $p \in E^o$ then p is an interior of E^o . By definition p is an interior of E. So $N_{r_0}(p) \subset E$ for some $r_0 > 0$. Let $r_1 = r_0/2$ and $h = r_0 - r_1$. It suffices to show $N_{r_1}(p) \subset E^o$.

Consider $N_h(p')$ for any $p' \in N_{r_1}(p)$. Through the picture it is clear this new neighbourhood shall be bounded by $N_{r_0}(p)$ and hence falls completely within E. That shows $p' \in E^o$ and in turn completes our proof.

In greater details, Observe $\forall q \in N_h(p'), d(q, p) \leq d(q, p') + d(p', p) < h + r_1 = (r_0 - r_1) + r_1 = r_0$, and hence $q \in N_{r_0}(p) \subset E$.

b

 (\leftarrow) Trivial by a.

 (\rightarrow) Trivially $E^o \subset E$. By hypothesis, The definition of open E immediately concludes $E \subset E^o$.

С

Any $p \in G$ is an interior point of G by definition. So there is a neighbourhood $N_{r_0}(p) \subset G$ for some $r_0 > 0$. But we know $G \subset E$, So $N_{r_0}(p) \subset E$, p is an interior point of E.

I guess Yes. We struggled with a formal proof though.

Problem. 4

Definition. 1 Given a point $p \in X$, Define $V_p = \{x > p \mid [p,x] \subset X\} \cup \{x .$

Remark. 2 V_p constitutes a largest segment (a, b), Given X is an open-set. Assuming $V_p = (a, b]$ derives an immediate contradiction as b won't be an interior point of X.

A more rigorous argument for showing V_p is a segment can be made by constructing a segment $(inf V_p, sup V_p)$ but for brevity we ignore it.

Lemma. 3 Given an open-set X and some $V_p \subset X$, For any $q \neq p$, Either $V_p = V_q$ or $V_p \cap V_q = \phi$.

Easily proven by considering the equivalent logical form of $V_p \cap V_q \neq \phi \rightarrow V_p = V_q$.

Lemma. 4 Given a non-empty open-set X and some $V_p \subset X$, $X_1 = X - V_p$ is either empty or a non-empty open-set.

If $V_p = X$ then X_1 is empty. Consider V_p as a strict or proper subset of X. Then X_1 is non-empty.

We show now X_1 is an open-set. Let q be an arbitrary point of X_1 , Then also $q \in X$. Since X is an open-set we know there's some neighbour $N_{r0}(q) \subset X$. Clearly $N_{r0}(q) \subset V_q$. By Lemma 3 and since $q \notin V_p$, It follows $N_{r0}(q) \cap V_p = \phi$. So $N_{r0}(q) \subset X_1$ and q is an interior point of X_1 .

Corollary. 5 Countable $\{V_i\}$

Follow the same procedure of Lemma 4 but let the taken point p_i to be a rational number. Take some real number z_i in non-empty X_i ; As it is interior there is a neighbour such that for any q where $d(z_i, q) < r_0$ for some $r_0 > 0$, $q \in X$. By the density of rational numbers, there is a rational p_i which satisfies $d(z_i, p_i) < r_0$. Hence $p_i \in X_i$.

We now know every distinct V_{p_i} corresponds to a distinct rational number p_i . So the cardinality of $\{V_{p_i}\}$ is at most countable.

Theorem. 6 Main Problem

Following the procedure of Lemma 4 and by Corollary 5 we can keep constructing V_{p_1} , V_{p_2} , ...etc, which in turn are *at most countable*. There are two cases:

• (i) We reach some empty X_i , So $\{V_i\}$ is finite. Or

• (ii) We do not ever reach an empty X_i , and $\{V_i\}$ is *countable*.

Note. I received the following support before being able to solve the problem. I admit it was totally unlikely to think of the formulation $(q - \delta, q + \epsilon) \subset X$ on my own. I admit the problem is completely spoiled.

Mostafa Touny Today at 9:42 PM for $p \neq q$ we have either V_q = V_p or V_q \cap V_p = Ø. I guess that enables us to conclude X_i = X_i-1 - S_i-1 is either - non-empty open-set

Mostafa Touny Today at 9:43 PM

Available 🏘 Today at 9:44 PM No, I just don't see how the conclusion follows from this particular premise