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Problem. 1

We prove each axiom as listed by Rudin in page 5.

A1 (a0 + a1) +
√
2(b0 + b1) ∈ Q(

√
2), As (a0 + a1), (b0 + b1) ∈ Q.

A2 Follows immediately by properties of Q.

A3 Follows immediately by properties of Q.

A4 0Q(2) here is the number 0 +
√
2 0 = 0R.

A5 For an xQ(2), −xQ(2) = −a+
√
2(−b).

M1 The product is (a0a1 + 2b0b1) +
√
2(a0b1 + a1b0), Where the formed a and b are in

Q.

M2 Following properties of Q, The product we formed in M1 is the same in cases of
xy and yx.

M3 Following properties of Q, The product we formed in M1 is the same in cases of
(xy)z and x(yz).

M4 1Q(
√
2) here is 1R ̸= 0R = 0Q(2).

M5 If xQ(
√
2) ̸= 0Q(2) = 0 +

√
2 · 0, Then we know either a ̸= 0 or b ̸= 0, and hence

xQ(
√
2) = a + b

√
2 ̸= 0. Define x−1

Q(
√
2)

= 1
a+ b

√
2
. What is remaining is to show

1
a+ b

√
2
∈ Q(2) by a multiplication by its conjugate. Observe:

1

a+ b
√
2

=
1

a+ b
√
2
· a− b

√
2

a− b
√
2

=
a− b

√
2

a2 + 2b2
= (

a

a2 + 2b2
) + (

−b
a2 + 2b2

)
√
2

And clearly ( a
a2 + 2b2

), ( −b
a2 + 2b2

) ∈ Q.

D Follows by a trivial algebra.

Problem. 2

Let’s look at the special case of z = (x, 0). Then for any r > 0, there exists a complex
number w = (x/r, 0), such that rw = z.

From now on we focus on z = (x, y) assuming y ̸= 0. Before proceeding, we develop a
central lemma.
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Lemma. 1 For any complex number w = (a, b), |w| = 1↔ a2 + b2 = 1.
Follows immediately by setting w · w = 1 and multiplying.

Lemma. 2 Given any x and y ̸= 0, Finding reals r, a, b such that r · a = x, r · b = y
satisfies z = (x, y) = r · (a, b) = rw
Follows immediately by a trivial algebra.

Theorem. 3 Main Problem
Now we combine Lemma 1 and Lemma 2 to satisfy both requirements by forming a
combined system of equations, Given any z = (x, y) where y ̸= 0.

r · a = x

r · b = y

a2 + b2 = 1

It can be solved by substitution where:

a =
√
1− b2

r = y/b valid as b isn’t zero

3/b ·
√
1− b2 = x

Note b ̸= 0 lest r · b = r · 0 = 0 = y, Contradicting our assumption.

The system uniquely determines the values

b =
3√

x2 + 9

r =
y

3
·
√
x2 + 9

a =

√
1− 9

x2 + 9
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Problem. 3

a

We show if arbitrary p ∈ Eo then p is an interior of Eo. By definition p is an interior of
E. So Nr0(p) ⊂ E for some r0 > 0. Let r1 = r0/2 and h = r0 − r1. It suffices to show
Nr1(p) ⊂ Eo.

Consider Nh(p
′) for any p′ ∈ Nr1(p). Through the picture it is clear this new neigh-

bourhood shall be bounded by Nr0(p) and hence falls completely within E. That shows
p′ ∈ Eo and in turn completes our proof.

In greater details, Observe ∀q ∈ Nh(p
′), d(q, p) ≤ d(q, p′) + d(p′, p) < h + r1 = (r0 −

r1) + r1 = r0, and hence q ∈ Nr0(p) ⊂ E.

b

(←) Trivial by a.

(→) Trivially Eo ⊂ E. By hypothesis, The definition of open E immediately concludes
E ⊂ Eo.

c

Any p ∈ G is an interior point of G by definition. So there is a neighbourhood Nr0(p) ⊂
G for some r0 > 0. But we know G ⊂ E, So Nr0(p) ⊂ E, p is an interior point of E.
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e

I guess Yes. We struggled with a formal proof though.

Problem. 4

Definition. 1 Given a point p ∈ X, Define Vp = {x > p | [p, x] ⊂ X} ∪ {x <
p | [x, p] ⊂ X}.

Remark. 2 Vp constitutes a largest segment (a, b), Given X is an open-set.
Assuming Vp = (a, b] derives an immediate contradiction as b won’t be an interior point
of X.

A more rigorous argument for showing Vp is a segment can be made by constructing a
segment (inf Vp, sup Vp) but for brevity we ignore it.

Lemma. 3 Given an open-set X and some Vp ⊂ X, For any q ̸= p, Either Vp = Vq or
Vp ∩ Vq = ϕ.
Easily proven by considering the equivalent logical form of Vp ∩ Vq ̸= ϕ→ Vp = Vq.

Lemma. 4 Given a non-empty open-set X and some Vp ⊂ X, X1 = X − Vp is either
empty or a non-empty open-set.
If Vp = X then X1 is empty. Consider Vp as a strict or proper subset of X. Then X1 is
non-empty.

We show now X1 is an open-set. Let q be an arbitrary point of X1, Then also q ∈ X.
Since X is an open-set we know there’s some neighbour Nr0(q) ⊂ X. Clearly Nr0(q) ⊂
Vq. By Lemma 3 and since q ̸∈ Vp, It follows Nr0(q)∩ Vp = ϕ. So Nr0(q) ⊂ X1 and q is
an interior point of X1.

Corollary. 5 Countable {Vi}
Follow the same procedure of Lemma 4 but let the taken point pi to be a rational
number. Take some real number zi in non-emptyXi; As it is interior there is a neighbour
such that for any q where d(zi, q) < r0 for some r0 > 0, q ∈ X. By the density of rational
numbers, there is a rational pi which satisfies d(zi, pi) < r0. Hence pi ∈ Xi.

We now know every distinct Vpi corresponds to a distinct rational number pi. So the
cardinality of {Vpi} is at most countable.

Theorem. 6 Main Problem
Following the procedure of Lemma 4 and by Corollary 5 we can keep constructing Vp1 ,
Vp2 , ..etc, which in turn are at most countable. There are two cases:

� (i) We reach some empty Xi, So {Vi} is finite. Or

5



� (ii) We do not ever reach an empty Xi, and {Vi} is countable.

Note. I received the following support before being able to solve the problem. I admit
it was totally unlikely to think of the formulation (q−δ, q+ ϵ) ⊂ X on my own. I admit
the problem is completely spoiled.
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