Problem-Set 03

Mostafa Touny

December 12, 2022

ContentsProblem. 1Problem. 2Problem. 3Problem. 4

Problem. 1

The required conditions follow naturally as:

- $d'(x,x) = \sqrt{d(x,x)} = \sqrt{0} = 0.$
- If d(x, y) > 0 then d'(x, y) > 0 as the square root of non-zero is non-zero. Otherwise $0^2 = 0$ contradicting the fact d'(x, y) > 0.
- $d'(x,y) = \sqrt{d(x,y)} = \sqrt{d(y,x)} = d'(y,x).$
- $d'(x,y) = \sqrt{d(x,y)} \le \sqrt{d(x,r) + d(r,y)} \le \sqrt{d(x,r)} + \sqrt{d(r,y)} = d'(x,r) + d'(r,y).$

For an arbitrary open-set of d, $\{y \mid d(x,y) < r\}$ there is an equivalent open-set of d', $\{y \mid d'(x,y) < \sqrt{r}\}$. For an arbitrary open-set of d', $\{y \mid d'(x,y) < r\}$, there is an equivalent open-set of d, $\{y \mid d(x,y) < r^2\}$.

Note. Some good friends assisted in solving this problem.

Problem. 2

Lemma. 1 For any point p in R, There exists a smallest element in the set $\{q \in E \mid q > p\}$

Assume to the contrary that no smallest element exists. Then as the set is bounded

below, the *infimum* exists, and is a limit point. That contradicts our hypothesis of no limit points in E.

Corollary. 2 $E \cap R^+ = E^+$ has a smallest element By the above lemma set p = 0.

Corollarly. 3 Given $x_i \in E^+$ there exists a smallest element among $E^+ \cap \{y \mid y > x_i\}$ By the above lemma set $p = x_i$.

Now we have a counting scheme on E^+ . What is remaining now is to prove every element in E will be hit eventually. The following lemma suffices.

Lemma. 4 there are finitely many elements in $E \cap [-|a|, |a|]$ Assuming the contrary for the sake of contradiction, We get infinite elements in $E \cap [-|a|, |a|]$. Those are present in both E and [-|a|, |a|] by definition. Since [-|a|, |a|] is compact we know any infinite subset has a limit point (*Theorem 2.41, p. 40* in *baby-rudin*). But then we get a limit point in E. Contradiction

Similarly we can prove $E \cap R^- = E^-$ is countable, and hence E is countable also.

Note. 1 Professor Peng Zhou hinted the solution approach

Note. 2 Through chatting with good friends a cleaner alternative proof can be made as, "Because E has no limit points it is closed. Assume E is uncountable. Then there is an integer n such that intersection with [n,n+1] is also uncountable. This intersection is closed and bounded, thus compact. So we can take a sequence inside this intersection and it will have a convergent subsequence contradicting the assumption on limit points"

6	Mostafa Touny Yesterday at 11:09 PM
	I conjecture the following approach: Establish an enumeration process of sequence x_i in E, And prove there is a discrete minimum distance from x_i to x_i+1.
	 Consider R with the standard metric. Let E ⊂ R be a subset which has no limit points. Show that E is at most countable. (3 points) Even if my approach is correct, I feel the proof is going to be complicated, and that there's a cleaner way.
	Do you think the approach I articulated is a good one or tedious as I guessed?
۲	Crazy Carla Yesterday at 11:12 PM Why are you assuming that E is countable?
	Poopheeler II: Wrath of Khanway Yesterday at 11:12 PM Do you need to assume E is countable to do the enumeration x_i to begin with? ^
6	Mostafa Touny Yesterday at 11:12 PM No
	I would consider R+ first and show that E restricted to it has a smallest point. Otherwise a limit point would be present. I guess my technique is clear now
	December 6, 2022
	FShrike on MSE Today at 12:13 AM If I'm not mistaken, a set with no limit points is necessarily discrete (in any Hausdorff space) and the only discrete subsets of R are countable
•	Gel(Q(7_2/)/Q) Today at 1:22 AM I think there's a cute way using Heine-Borel (edited)
	Gal(Q((_2))/Q) Today at 1:34 AM Because E has no limit points it is closed. Assume E is uncountable. Then there is an integer n such that intersection with [n,n+1] is also uncountable. This intersection is closed and bounded, thus compact. So we can take a sequence inside this intersection and it will have a convergent subsequence contradicting the assumption on limit points
9	- O OSALO(CO)/O Because E has no limit points it is closed. Assume E is uncountable. Then there is an integer n such that intersection with [n,n+1] is a geogristle Today at 3:52 AM u gotta specify distinct elements of sequence
3	Available of Today at 4:53 AM Suppose \$n(x)=\inf{m\in\bN \mid B(x, 1/m) \cap E = 1}\$ for \$x\in E\$. Then \$n(x)\in\bN\$ and \${B(x,1/n(x))}_{x\in E}\$ is an open cover of \$E\$. Since \$\bR\$ is heredetarily Lindelöf, in the sense of the link I post, there is a countable subcover. However, since this cover consists of disjoint subsets of \$E\$ that contain exactly one member of \$E\$, this countable subcover must be exactly the original cover and since \$E\$ is in bijection with this cover, \$E\$ must be countable.
	-≫blodøx ✓BOTI Today at 4:53 AM Available
	Suppose $n(x) = \inf\{m \in \mathbb{N} \mid B(x, 1/m) \cap E = 1\}$ for $x \in E$. Then $n(x) \in \mathbb{N}$ and $\{B(x, 1/n(x))\}_{eE}$ is an open cover of E . Since \mathbb{R} is heredetarily Lindelöf, in the sense of the link 1 post, there is a countable subcover. However, since this cover consists of disjoint subsets of E that contain exactly one member of E , this countable subcover must be exactly the original cover and since E is in bijection with this cover, E must be countable.
2	Available 🌸 Today at 4:54 AM The link https://math.stackexchange.com/a/2320467/750710
6	 Control ((C-A)(C) Because E has no limit points it is closed. Assume E is uncountable. Then there is an integer n such that intersection with [n,n+1] is a Mostafa Touny Today at 8:53 AM E is uncountable. Then there is an integer n such that intersection with [n,n+1] is also uncountable Would you recommend me a resource for this?
	Poopheeler II: Wrath of Khanway Today at 8:55 AM Assume the negation. Then \$E\$ is the union of disjoint countable sets \$E\cap [n,n+1]\$, and a countable union of countable sets is countable. But \$E\$ is uncountable (edited)

Problem. 3

Assume for the sake of contradiction that the process does not stop after a finite number of steps. Then the sequence x_i is infinite. Consider the infinite subset $\{x_i\} = S_{\delta}$; By hypothesis it has a limit point in X, Call it p. So for neighbourhood $N_{\delta/4}(p)$, some point $q_1 \neq p$ is in that neighbourhood. Let $r_1 = d(p, q_1)$. Consider neighbourhood $N_{r_1/2}(p)$; Clearly q_1 is not in it. So there is a point $q_2 \neq q_1$ in it. We have now distinct points $q_1, q_2 \in S$ such that $d(p, q_1) \leq \delta/4$ and $d(p, q_2) \leq \delta/4$. It follows $d(q_1, q_2) \leq d(q_1, p) + d(p, q_2) \leq \delta/4 + \delta/4 = \delta/2$. But the construction of sequence x_i stipulates every pair of points is of distance at least δ . Contradiction.

It follows by the above lemma, that for any point p in X, the distance between it and some x_i of S is strictly less than δ . Therefore p is covered by $N_{\delta}x_i$.

Now we prove X is separable. We know for each $\delta = 1/n$, The corresponding subset $S_{1/n}$ is finite. Clearly $\bigcup_n S_{1/n} = S$ is countably infinite. It suffices to show, For a point $p \in X - S$, it can get arbitrarily close to points of S. Consider arbitrary $\delta > 0$ and its corresponding neighbourhood $N_{\delta}(p)$.

Take $\delta' = \delta/2$, and n' > 0 such that $1/n' < \delta'$. Consider $N_{\delta'}(p)$. There are two cases. Case 1: A point $q \in S_{1/n'}$ is in $N_{\delta'}(p)$, Then it is also in $N_{\delta}(p)$. Case 2: No point $q \in S_{1/n'}$ is in $N_{\delta'}(p)$. Then for any $z \in N_{\delta'}(p)$ some point $q \in S_{1/n'}$

exists such that d(z,q) < 1/n'. It follows $\delta = \delta/2 + \delta/2 > \delta' + 1/n' > d(p,z) + d(z,q) \ge d(p,q)$. In other words, $q \in N_{\delta}(p)$.

Problem. 4

Failed to solve.

Partial idea: Establish a sequence $x, f^1(x), f^2(x), f^3(x), \ldots$ If I proved it is finite then I am done, as it is necessarily the case $f^k(x) = f^{k+1}(x)$. If it is infinite then a limit point of it exists as X is a compact set.