Problem-Set 04

Mostafa Touny

January 3, 2023

Contents

Problem. 1 8
Problem. 2 8
Problem. 3 9
Problem. $4 \longrightarrow 9$

Problem. 1

Lemma. 1 If $x_{n+1} \leq \lambda x_{n}$, where $0 \leq \lambda<1$, Then the sequence $\left\{x_{n}\right\}$ gets artbitrarily small
Clearly $x_{1+k} \leq \lambda^{k} x_{1}$, by substituting successive terms in the inequality. Given $\epsilon>0$ we can reach $\lambda^{k} x \leq \epsilon$ by setting $k \geq \log _{\lambda} y / x$.
Fix any x in the metric space, Then construct the following sequence: $\left\{f^{n}(x)\right\}=$ $f^{0}(x), f^{1}(x), f^{2}(x), \ldots$. We prove it is cauchy. Consider $d\left(f^{n}(x), f^{m}(x)\right)$ of some tail where $n<m$. By the triangular inequality, We know the distance is upper-bounded by $d\left(f^{n}(x), f^{n+1}(x)\right)+d\left(f^{n+1}(x), f^{n+2}(x)\right)+\cdots+d\left(f^{m-1}(x), f^{m}(x)\right) \leq(m-n+$ 1) $\lambda^{n-1} d\left(f^{1}(x), f^{2}(x)\right)$. By Lemma 1 and substituting distances by a sequence $\left\{x_{n}\right\}$ our intended result is concluded.

Given X is complete we know our sequence $\left\{f^{n}(x)\right\}$ converges. Call it q. We show it converges also to $f(q)$, and by the uniqueness of limits, The main theorem of $f(x)=x$ for some x is concluded. Observe $d\left(f^{n+1}(x), f(q)\right) \leq d\left(f^{n}(x), q\right)$, but the right hand side of the inequality is arbitrarily small. QED.

Note. This problem was solved with assistance by wonderful friends. The main key idea of using the uniqueness of limits was given by them. See the following chat:

	FShrike on MSE Today at $9: 59$ PM the given hint isn't the usual way of doing this 1
a	Θ Mostafa Touny Is combining $d\left(f^{\wedge} 2(x), f^{\wedge} \uparrow(x)\right)<=\$ lambda $d\left(f^{\wedge} \wedge(x), f \wedge 0(x)\right)$, and $d\left(f^{\wedge} 3(x), f^{\wedge} 2(x)\right)<=\left\langle\right.$ lambda $d\left(f^{\wedge} 2(x), f^{\wedge} \wedge(x)\right)$ To conclude $d\left(f^{\wedge} 3(x), f^{\wedge} 2\left(x^{\prime}\right.\right.$. Mostafa Touny Today at 9:59 PM So we return to focus here
	\bigodot @Mostafa Touny Is combining $d(f \wedge 2(x), f \wedge 1(x))<=\backslash$ lambda $d(f \wedge 1(x), f \wedge 0(x))$, and $d\left(f^{\wedge} 3(x), f \wedge 2(x)\right)<=\$ lambda $d\left(f^{\wedge} 2(x), f^{\wedge} 1(x)\right)$ To conclude $d\left(f^{\wedge} 3(x), f^{\wedge} 2\right.$ FShrike on MSE Today at 10:00 PM I think you meant lambda for \$ \lambda\$
\triangle	yolod $\sigma \times$ < вот Today at 10:00 PM FShrike on MSE I think you meant *lambda* for λ
	Mostafa Touny Today at 10:00 PM You are right fixed it
	@FShrike on MSE the given hint isn't the usual way of doing this Blitz. Today at 10:01 PM huh? Pretty sure it is \square \checkmark Bot @yolodox Mostafa Touny Blitz Today at 10:03 PM you want a bound for $\$ \mathrm{~d}\left(\mathrm{f}^{\wedge} n(x), f^{\wedge} m(x)\right) \$$
\triangle	Blitz you want a bound for $d\left(f^{n}(x), f^{m}(x)\right)$
	Mostafa Touny Today at 10:03 PM My problem is we can have a sequence of $\$\left\{d\left(f^{\wedge}\{n+1\}(x), f^{\wedge}\{n\}(x)\right)\right\} \$$ converging to zero, but no distance ever reaches exactly zero. (edted)
	yolodøx \checkmark Bot Today at 10:04 PM Mostafa Touny Compile Error! Click the $\mathbf{\AA}$ reaction for more information. (You may edit your message to recompile.) My problem is we can have a sequence of $\left\{d\left(f^{n+1}(x), f^{n \prime}(x)\right)\right\}$ converging to zero, but no distance, verreachesexactlyzero.
	\& @Blitz you want a bound for $\$ d\left(f^{\wedge} n(x) \cdot f^{\wedge} m(x)\right) \$$ Mostafa Touny Today at 10:04 PM Same intuition, A bound may arbitrarily get the distance close to zero but never equal to it. I do not see how a bound can be useful to obtain $\mathrm{d}(\mathrm{f}(\mathrm{x}), \mathrm{x})=0$
	@ @Mostafa Touny Same intuition, A bound may arbitrarily get the distance close to zero but never equal to it. Blitz Today at 10:05 PM you want to show this sequence is Cauchy
\pm	© @Bitz huh? Pretty sure it is FShrike on MSE Today at 10:05 PM Sorry, you can use it \qquad It's just not the first step, I got confused with the intentions

@ @Mostafa Touny I do not see how a bound can be useful to obtain $\mathrm{d}(\mathrm{f}(\mathrm{x}), \mathrm{x})=0$
Blitz Today at $10: 05 \mathrm{PM}$
it won't have to be the same x
and often won't be
Mostafa Touny Today at 10:06 PM
You are right
4. ©alitz you want to show this sequence is Cauchy
Mostafa Touny Today at 10:07 PM
For it to be cauchy we must bound the distance on any $f^{\wedge} n(x), f^{\wedge} m(x)$ as you said, of the tail of course (edited)
so that the diameter is bounded
FShrike on MSE Today at 10:07 PM
A nice follow up q. If the metric space X is compact, and $f: X->X$ satisfies $d(f(x), f(y))<d(x, y)$ for all x and y, f has a fixed point
© @FShrike on MSE A nice follow up q. If the metric space X is compact, and $f: X \rightarrow X$ satisfies $d(f(x), f(y))<d(x, y)$ for all x and y, f has a fixed point
Mostafa Touny Today at 10:08 PM
Thank you for the note. Let's investigate that after finishing this problem.
@ @FShrike on MSE A nice follow up q. If the metric space X is compact, and $f: X->X$ satisfies $d(f(x), f(y))<d(x, y)$ for all x and y, f has a fixed point
Blitz Today at $10: 08 \mathrm{PM}$
$\mathrm{x}=/=\mathrm{y}$
Mostafa Touny Today at 10:09 PM
Without the loss of generality we can assume $n>m$.
It is proven using triangle inequality of distances, right?
Blitz Today at $10: 09 \mathrm{PM}$
yes

Mostafa Touny Today at 10:10 PM

Before working out a careful proof, Even if I proved this sequence is cauchy, I do not see how to obtain some x where $\mathrm{d}(\mathrm{f}(\mathrm{x}), \mathrm{x})=0$. (edired)
Do we need to use any special toolbox?
like a theorem from Rudin's book?
SWojowns A. Today at 10:11 PM
Recall that X is complete
Mostafa Touny Today at 10:12 PM
Then the sequence converges, call it q.
Distances decreasingly converge to q . I don't see any insight
Assuming $\mathrm{d}(\mathrm{f}(\mathrm{x}), \mathrm{x})>0$ does not yield any contradiction
Blitz Today at 10:15 PM
$f^{\wedge}(n+1)(x)=f\left(f^{\wedge} n(x)\right)$ while $f^{\wedge} n(x)$ and $f^{\wedge}(n+1)(x)$ converge to the same point
here we use continuity
\$1Wojowns Today at 10:18 PM
You don't need to explicitly use continuity
Mostafa Touny Today at 10:18 PM

	тorcs	neomms
,		pe. 3.6. and $24-30$: owered in citen
2		mas.l\|
,	4 conea mervars come ex rumbers, Cauchy: Setimar:	pa $3 n-0$ \{Thescem 2 as (anly) 41 (Cowaloy so Thecren 243 olys and $18-8$ Inimendrat Ruafing
4		max ${ }^{30-4}$
5		mests
,		

1. Today at $10: 42 \mathrm{PM}$

Well it's really hard to fairly answer such questions. If you know a solution (and came up with it using continuity say like I did) then you can bake up a dozen vaguely plausible explanations of how one could arrive at it. But you can't ever know what is the "intended" line of reasoning or whether there is one like that at all

Mostafa Touny Today at 10:43 PM
I meant, whether we can come up with a new line of reasoning, other than the one of continuity and yet, reach the same key insight, of using limit uniqueness as the proof technique.

1. Today at 10:43 PM

Same thing as I said applies
I came up with the new line of reasoning by thinking about continuity
(f) FShrike on MSE Today at 10:45 PM

What's wrong with "being close to continuity"?
continuity is a very essential concept

Mostafa Touny Today at 10:45 PM
Thank you @\$\Wojowu\$ for the insightful discussion. I promise to contribute to this community at some day.

\%olod $\sigma x \vee$ Bot Today at 10:45 PM

Mostafa Touny

Thank you ©Whoever pinged is a cutie! for the insightful discussion. I
promise to contribute to this community at some day.

SlWojawns 13 Today at 10:46 PM
You're already contributing
$\stackrel{2}{2}$
Mostafa Touny Today at $10: 46 \mathrm{PM}$
@FShrike on MSE, but as someone who takes the course for the first time, I am expected to solve the problem without having continuity as a background-insight.

* FShrike on MSE Today at 10:47 PM

Really? Sequences, limits, metric spaces, convergence,... continuity should be on that course!!
\$W Wojowus 13 Today at 10:47 PM
I don't think there is any problem with having continuity as an insight
® Mostafa Touny Click to see attachment E

Mostafa Touny Today at 10:47 PM
The problem is up to lecture 9
\$ Wojowns 13 Today at $10: 47 \mathrm{PM}$
Even if you are expected to not use it in your proof, no issue using it as motivation
FShrike on MSE Today at $10: 47 \mathrm{PM}$
The argument is all about using 'closeness' ideas. That's more or less what continuity is about for metric spaces

Mostafa Touny Today at $10: 48 \mathrm{PM}$

So you mean, taking continuity insight from calculus, and using that insight here to come-up with the proof idea?

FShrike on MSE Today at 10:48 PM
meh not from calculus
(V) @FShrike on MSE The argument is all about using 'closeness' ideas. That's more or less what continuity is about for metric spaces

Mostafa Touny Today at $10: 48 \mathrm{PM}$
I ensure you up to this problem, continuity is not covered. See the course from here: https://ocw.mit.edu/courses/18-100c-real-
analysis-fall-2012/pages/readings/
FShrike on MSE Today at 10:49 PM
Sure. I just find that surprising

Problem. 2

Suppose $\left(x_{k}\right)$ converges to q. Let $\epsilon>0$ be arbitrary. We already have N_{0} where for any $k \geq N_{0} x_{k}-q<\epsilon$. For a given permuted sequence $\left(x_{g(k)}\right)$, We now show there's N_{1} where for any $n \geq N_{1}, x_{n}^{\prime}-q<\epsilon$.

Observe $x_{1}, \ldots, x_{N_{0}-1}$ are finite. Consider indices $g(1), \ldots, g\left(N_{0}-1\right)$ and take the maximum. Call it $g_{\max }\left(N_{0}-1\right)$. Clearly for any index i greater than it, we know x_{i}^{\prime} is not equal to any one of $x_{1}, \ldots, x_{N_{0}-1}$. So it is contained in the trail $x_{N_{0}}, x_{N_{0}+1}, \ldots$. Thus, $x_{i}^{\prime}-q<\epsilon$ for any $i>g_{\max }\left(N_{0}-1\right)$.

It is not true if we dropped the assumption that g is one-to-one. A counter example is a permutation function whose range is exactly one element of \mathcal{N}.

Problem. 3

The is exactly the same as theorem 3.4 in Rudin's page 50.
Problem. 4
Further

