Problem-Set 06

Mostafa Touny

March 1, 2023

Contents	
Problem. 1	2
Problem. 2	2
Problem. 3	2
Problem. 4	2

Problem. 1

Problem. 2

Problem. 3

The first part is solved by a trivial set-theoretic operations. The second is postponed.

Observe if $x \in f(\overline{E})$ then x = f(p) for some $p \in \overline{E}$. To prove $x \in \overline{f(E)}$ it suffices to have $f(p) \notin f(E)$. By contrapositive, It follows by the given $p \notin E$.

Not the proof is independent of continuity.

Problem. 4

Observation. In case of a continuous function f at point p, If we have a sequence $\{x_i\}$ converging to p and $\{f(x_i)\}$ converges to a then a = f(p).

Theorem. Our approach is proving the definition of a closed-set is satisfied. Namely, If p is a limit point of Z(f) then $p \in Z(f)$. Fix p and suppose $\forall \epsilon > 0 \exists x \in Z(f)$ such that $d(x,p) < \epsilon$. We can construct a sequence x_i arbitrarily close to p where $f(x_i) = 0$. By the above observation it must be the case f(p) = 0, and hence $p \in Z(f)$.