Problem-Set 07

Mostafa Touny

March 15, 2023

Contents	
Problem. 1	2
Problem. 2	2
Problem. 3	2

Problem. 1

Problem. 2

"continuity" prob. 14, p. 100

Problem. 3

By hypothesis, For any reals x and t, We are given $|f(t) - f(x)| \le (t - x)^2$. Clearly:

$$\frac{|f(t) - f(x)|}{|t - x|} \le \frac{(t - x)^2}{|t - x|}$$
$$\left|\frac{f(t) - f(x)}{t - x}\right| \le |t - x|$$

But $\lim_{t\to x} |t-x| = 0$ which concludes $\lim_{t\to x} \left| \frac{f(t) - f(x)}{t-x} \right| \le 0$. Since the absolute value is always equal or greater than 0, We get also $\lim_{t\to x} \left| \frac{f(t) - f(x)}{t-x} \right| \ge 0$. Therefore f'(x) = 0 for any real x.