Problem-Set 08

Mostafa Touny

April 18, 2023

Contents

Problem. 1 2
Problem. 2 3
Problem. 3 4

Problem. 1

By boundedness we get $|f(x)| \leq M_{f}$ and $|g(x)| \leq M_{g}$. Clearly there is N_{g} such that for $n \geq N_{g},\left|g_{n}(x)\right| \leq M_{g}+\epsilon_{g}$.
Let $\epsilon>0$ be arbitrary. Define $\epsilon_{0}=\frac{\epsilon}{2\left(M_{g}+\epsilon_{g}\right)}$ and $\epsilon_{1}=\frac{\epsilon}{2\left(M_{f}\right)}$.
By hypothesis we have can take $N_{\max }$ considering also N_{g} to get

$$
\begin{aligned}
& \left|f_{n}(x)-f(x)\right|<+\epsilon_{0} \\
& \left|g_{n}(x)-g(x)\right|<+\epsilon_{1}
\end{aligned}
$$

By multiplication,

$$
\begin{array}{r}
\left|f_{n}(x) g_{n}(x)-f(x) g_{n}(x)\right|<+\epsilon_{0} \cdot\left|g_{n}(x)\right| \\
\quad\left|f(x) g_{n}(x)-f(x) g(x)\right|<+\epsilon_{1} \cdot|f(x)|
\end{array}
$$

Now observe:

$$
\begin{aligned}
\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| & =\left|f_{n}(x) g_{n}(x)-f(x) g_{n}(x)+f(x) g_{n}(x)-f(x) g(x)\right| \\
& \leq\left|f_{n}(x) g_{n}(x)-f(x) g_{n}(x)\right|+\left|f(x) g_{n}(x)-f(x) g(x)\right| \\
& <\epsilon_{0}\left|g_{n}(x)\right|+\epsilon_{1}|f(x)| \\
& \leq \epsilon_{0}\left(M_{g}+\epsilon_{g}\right)+\epsilon_{1}\left(M_{f}\right) \\
& =\epsilon / 2+\epsilon / 2=\epsilon
\end{aligned}
$$

The second line follows by triangular inequality.

Problem. 2

Lemma. \hat{f} is of the same class.
By definition, The domain of \hat{f} is the same as f. Clearly $\hat{f}(0)=\frac{1}{4} f(2 \cdot 0)=\frac{1}{4} f(0)=$ $\frac{1}{4}(0)=0$ and $\hat{f}(1)=\frac{3}{4} f(2 \cdot 1-1)+\frac{1}{4}=\frac{3}{4} f(1)+\frac{1}{4}=\frac{3}{4}(1)+\frac{1}{4}=1$.
The continuity of \hat{f} follows by the continuity of f. Consider arbitrary $\hat{f}(q)$ and $\epsilon>0$. Consider the case of $\hat{f}(q)=\frac{3}{4} f(2 q-1)+\frac{1}{4}$ and note the other case is symmetric. Take $\grave{\epsilon}=\frac{4}{3} \epsilon$. By continuity of f, There exists δ such that for any r, if $|r-p|<\delta$ then
$|f(r)-f(p)|<\grave{\epsilon}$. Define $\grave{\delta}=\frac{\delta}{2}$, and observe for any r :

$$
\begin{gathered}
\text { If }|r-q|<\grave{\delta}=\frac{\delta}{2} \\
\text { Then }|(2 r+1)-(2 q+1)|<\delta \\
\text { By Continuity }|f(2 r+1)-f(2 q+1)|<\grave{\epsilon}=\frac{4}{3} \epsilon \\
\text { Then }\left|\left(\frac{3}{4} f(2 r+1)+\frac{1}{4}\right)-\left(\frac{3}{4} f(2 q+1)+\frac{1}{4}\right)\right|<\epsilon \\
\text { By definition }|\hat{f}(r)-\hat{f}(q)|<\epsilon
\end{gathered}
$$

Lemma. $d(\hat{f}, \hat{g}) \leq \frac{3}{4} d(f, g)$.
If $x \geq \frac{1}{2}$,

$$
\begin{aligned}
|\hat{f}(x)-\hat{g}(x)| & =\left|\left(\frac{3}{4} f(2 x-1)+\frac{1}{4}\right)-\left(\frac{3}{4} g(2 x-1)+\frac{1}{4}\right)\right| \\
& =\left|\frac{3}{4} f(2 x-1)-\frac{3}{4} g(2 x-1)\right| \\
& =\left|\frac{3}{4} f(y)-\frac{3}{4} g(y)\right| \\
& =\frac{3}{4}|f(y)-g(y)|
\end{aligned}
$$

where we define $y=2 x-1$.
Since $|\hat{f}-\hat{g}|$ is defined in terms of $|f-g|$, Observe the maximum of $|f-g|$ yields the maximum of $|\hat{f}-\hat{g}|$.
Lemma. Exactly one f where $\hat{f}=f$.
Assume we have $\hat{f}=f$ and $\hat{g}=g$. By the previous lemma, $d(f, g)=d(\hat{f}, \hat{g}) \leq \frac{3}{4} d(f, g)$. This is true only if $d(f, g)=0$ which concludes $|f(x)-g(x)|=0$ for all x. In other words, $f=g$.

Problem. 3

We use the following theorem found in Rudin's book in page 59.

Fix $x \in[a, b]$. The theorem follows by the following lemmas

- (i) $\sum_{k=n}^{m} f_{k}(x) \geq 0$ for odd n.
- (ii) $\sum_{k=n}^{m} f_{k}(x) \leq 0$ for even n.
- (iii) Given $f_{n}(x)=+M$ for odd n and non-negative $M, \sum_{k=n}^{m} f_{n}(x) \leq M$.
- (iv) Given $f_{n}(x)=-M$ for even n and non-negative $M, \sum_{k=n}^{m} f_{n}(x) \geq-M$.

Proof.
(i). Follows by a strong form of induction. Observe for odd $n,\left|f_{n}(x)\right| \geq\left|f_{n+1}(x)\right|$ yields $f_{n}(x)+f_{n+1} \geq 0$. The induction step is to show $\sum_{k=n}^{m+2} f_{k}(x) \geq 0$ given $\sum_{k=n}^{m} f_{k}(x) \geq 0$ and $\sum_{k=n}^{m+1} f_{k}(x) \geq 0$.
(ii). Symmetric to (i).
(iii) Expand to $f_{n}(x)+\sum_{k=n+1}^{m} f_{k}(x)$, Then it follows immediately by (ii)
(iv). Symmetric to (iii).

Theorem. These lemmas conclude, Given $f_{n}(x)=M$ regardless n is even or odd, $\left|\sum_{k=n}^{m} f_{k}(x)\right| \leq|M|$. But we are given $f_{n}(x)$ converges to 0 , So we can substitute M by any $\epsilon>0$.

