Lab 01

I. El-Shaarawy, \& M. Touny

October 22, 2023

Contents

Exercises 2
1.1.4 2
1.1.8 3
1.2.5 3
1.2.9 4
1.3.1 5
1.3.10 5
1.4.2 5
1.4.10 6

Exercises

Design Thinking

- Definition. well-define special keywords like exhaustive search, floor, square.
- Break. Break the big problem into subproblems.
- Partial Progress. Solve subproblems or relaxed versions.
- Concrete examples. Try on concrete cases.
- Generalize. Spot the pattern generalizable on any case conforming to the general definition.
- Connect Ideas. Figure whether the different ideas and solutions can combined.

Algorithmic Hints

- Are there redundant computations?

1.1.4

Hints

- You are given a square number n. Given some integer k, How can we verify it is the root?
- Follow the exhaustive search strategy, to find the root of n.
- You are given a real number r. Given some integer k, How can we verify it is the floor of r ?
- Follow the exhaustive search strategy, to find the floor of n.
- Combine all previous hints to find a unique definition of $\lfloor\sqrt{n}\rfloor$.
- Follow the exhaustive search strategy, to solve the main problem.

Solution

```
for i in n-1 .. 0
    if (i)^2 <= n
        return i
```


1.1.8

Hints

- Try this case on concrete examples like $m=2$ and $n=3$.
- Why $m \bmod n=m$ when $m<n$?
- Recall the definition of mod. What are the possible ranges of $x \bmod n$ for any integer x ?

Solution

It shall swap them as $r=m \bmod n=m$ when $m<n$.
Only once. Given $m>n$, Necessarily $n>m \bmod n$.

1.2 .5

Hints

- Convert a concrete decimal number to binary. Observe how the right most digit from the binary representation is obtained.
- Given a binary representation, What is the number we divide on it, so that the quotient eliminate the right most digit?
- Follow the Decrease and Conquer strategy, with the above two hints, to solve the problem.

Solution

```
DecToBin(n):
    # input: integer n
    # output: binary representation as a list
    # binary representation
    l = [ ]
    while n != 0:
        # kth digit from right to left
        b.appendLeft( n % 2 )
        # remove the rightmost digit
        # division output is an integer
        n = n/2
```

```
Algorithm 1 Convert to the binary representation of a given integer
Require: input is integer \(n\)
Ensure: output is a list of binary digits
    \(l \leftarrow[]\)
    while \(n \neq 0\) do
        \(l \leftarrow[n \bmod 2] \cup l\).
        \(n \leftarrow n / 2\)
    end while
```


1.2.9

Hint

- Are there duplicated computations?
- Are there pairs tested twice?
- Observe $|a-b|=|b-a|$.
- If we checked all elements with $A[i]$, Do we need to test $A[j]$ with $A[i]$?

Solution

```
MinDistance( A ):
    \# input: array of size n
    \# output: minimum distance between two distinct elements
    dmin = infinity
    for i in 0 .. n-1:
        for \(j\) in \(i+1\).. \(n-1\) :
            dis \(=\mid A[i]-A[j]\) |
            if dis < dmin:
                dmin \(=\) dis
```

```
Algorithm 2 Find the minimum distance between two distinct elements in an array
```

Require: input is array $A[0 . . n-1]$ of numbers
Ensure: output is the minimum distance between any two distinct elements
d min $\leftarrow \infty$
for $i=0$ to $n-1$ do
for $j=i+1$ to $n-1$ do
dis $\leftarrow|A[i]-A[j]|$
if $d i s<d \min$ then
$d \min \leftarrow d i s$
end if
end for
end for
return dmin

1.3.1

Hints

- if $A[i]==A[j]$ which index shall be counted? What can we conclude about S ?

Solution

a. Tedious to typeset.
b. No. Observe counting only happens when strictly $i<j$. If $A[i]==A[j]$ then the code counts $A[i]$ not $A[j]$. Therefore $A[i]$ shall succeed $A[j]$. In fact equal cells are reversed in the sorted array.
c. No. It does not modify array A but output is a different array S.

1.3.10

FAILED TO SOLVE.

1.4.2

Hint

- For ascendingly ordered array A, Is it possible for the target value t to exist in $A[i . . n-1]$ given the fact $t>A[i]$?
- Use the above hint to prune the search space.
- Which index of the array you think shall prune the greatest search space.

Solution

For target value t :
a. Access some element x in the array. If $t \neq x$, We can ignore searching in the right/left side of x.
b. While linear scanning, Terminate the algorithm earlier once some $A[i]>t$.

1.4.10

Hints

- Is it possible for two strings to be anagrams in case they different lengths?
- Is it possible for two strings to be anagrams if one of them has a character not present in the other?
- You can convert a character to its corresponding ascii number. Use that for a cheaper data strucutre.
- the ascii number corresponds to an index.

Solution

Two strings are anagrams if and only if they have the same count of characters.

```
AreStringsAnagrams(A, B):
    # input two strings
```

```
# output True if anagrams and False otherwise
# if lengths are not the same, then not anagrams
if length(A) != length(B):
    return False
# initialize characters counts to zeros for both strings
A_chCount = B_chCount = [ 0 ] * 26
# Count characters in both strings
for ch in A:
    A_chCount[ int(ch) ] = A_chCount[ int(ch) ] + 1
for ch in B:
    B_chCount[ int(ch) ] = B_chCount[ int(ch) ] + 1
# Anagrams if and only if characters count is exactly the same
return A_chCount == B_chCount
```

```
Algorithm 3 Detect whether two strings are anagrams
Require: input is two strings
Ensure: output True if anagrams and False otherwise
    : if \(|A| \neq|B|\) then
        return false
    end if
    \(A_{\text {count }} \leftarrow B_{\text {count }} \leftarrow[] \times 26\)
    for \(c h \in A\) do
        \(A_{\text {count }}[c h] \leftarrow A_{\text {count }}[c h]+1\)
    end for
    for \(c h \in B\) do
        \(B_{\text {count }}[c h] \leftarrow B_{\text {count }}[c h]+1\)
    end for
    return \(A_{\text {count }}==B_{\text {count }}\)
```

