
Lab 01

I. El-Shaarawy, & M. Touny

October 22, 2023

Contents

Exercises 2
1.1.4 . 2
1.1.8 . 3
1.2.5 . 3
1.2.9 . 4
1.3.1 . 5
1.3.10 . 5
1.4.2 . 5
1.4.10 . 6

1

Exercises

Design Thinking

� Definition. well-define special keywords like exhaustive search, floor, square.

� Break. Break the big problem into subproblems.

� Partial Progress. Solve subproblems or relaxed versions.

� Concrete examples. Try on concrete cases.

� Generalize. Spot the pattern generalizable on any case conforming to the general
definition.

� Connect Ideas. Figure whether the different ideas and solutions can combined.

Algorithmic Hints

� Are there redundant computations?

1.1.4

Hints

� You are given a square number n. Given some integer k, How can we verify it is
the root?

� Follow the exhaustive search strategy, to find the root of n.

� You are given a real number r. Given some integer k, How can we verify it is the
floor of r?

� Follow the exhaustive search strategy, to find the floor of n.

� Combine all previous hints to find a unique definition of ⌊
√
n⌋.

� Follow the exhaustive search strategy, to solve the main problem.

Solution

for i in n-1 .. 0

if (i)^2 <= n

return i

1.1.8

Hints

� Try this case on concrete examples like m = 2 and n = 3.

� Why m mod n = m when m < n?

2

� Recall the definition of mod . What are the possible ranges of x mod n for any
integer x?

Solution

It shall swap them as r = m mod n = m when m < n.

Only once. Given m > n, Necessarily n > m mod n.

1.2.5

Hints

� Convert a concrete decimal number to binary. Observe how the right most digit
from the binary representation is obtained.

� Given a binary representation, What is the number we divide on it, so that the
quotient eliminate the right most digit?

� Follow the Decrease and Conquer strategy, with the above two hints, to solve the
problem.

Solution

DecToBin(n):

input: integer n

output: binary representation as a list

binary representation

l = []

while n != 0:

kth digit from right to left

b.appendLeft(n % 2)

remove the rightmost digit

division output is an integer

n = n/2

Algorithm 1 Convert to the binary representation of a given integer

Require: input is integer n
Ensure: output is a list of binary digits
1: l← []
2: while n ̸= 0 do
3: l← [n mod 2] ∪ l.
4: n← n/2
5: end while

3

1.2.9

Hint

� Are there duplicated computations?

� Are there pairs tested twice?

� Observe |a− b| = |b− a|.

� If we checked all elements with A[i], Do we need to test A[j] with A[i]?

Solution

MinDistance(A):

input: array of size n

output: minimum distance between two distinct elements

dmin = infinity

for i in 0 .. n-1:

for j in i+1 .. n-1:

dis = | A[i] - A[j] |

if dis < dmin:

dmin = dis

Algorithm 2 Find the minimum distance between two distinct elements in an array

Require: input is array A[0..n− 1] of numbers
Ensure: output is the minimum distance between any two distinct elements
1: dmin←∞
2: for i = 0 to n− 1 do
3: for j = i+ 1 to n− 1 do
4: dis← |A[i]− A[j]|
5: if dis < dmin then
6: dmin← dis
7: end if
8: end for
9: end for

10: return dmin

1.3.1

Hints

� if A[i] == A[j] which index shall be counted? What can we conclude about S?

Solution

a. Tedious to typeset.

4

b. No. Observe counting only happens when strictly i < j. If A[i] == A[j] then the
code counts A[i] not A[j]. Therefore A[i] shall succeed A[j]. In fact equal cells are
reversed in the sorted array.

c. No. It does not modify array A but output is a different array S.

1.3.10

FAILED TO SOLVE.

1.4.2

Hint

� For ascendingly ordered array A, Is it possible for the target value t to exist in
A[i..n− 1] given the fact t > A[i]?

� Use the above hint to prune the search space.

� Which index of the array you think shall prune the greatest search space.

Solution

For target value t:

a. Access some element x in the array. If t ̸= x, We can ignore searching in the
right/left side of x.

b. While linear scanning, Terminate the algorithm earlier once some A[i] > t.

1.4.10

Hints

� Is it possible for two strings to be anagrams in case they different lengths?

� Is it possible for two strings to be anagrams if one of them has a character not
present in the other?

� You can convert a character to its corresponding ascii number. Use that for a
cheaper data strucutre.

� the ascii number corresponds to an index.

Solution

Two strings are anagrams if and only if they have the same count of characters.

AreStringsAnagrams(A, B):

input two strings

5

output True if anagrams and False otherwise

if lengths are not the same, then not anagrams

if length(A) != length(B):

return False

initialize characters counts to zeros for both strings

A_chCount = B_chCount = [0] * 26

Count characters in both strings

for ch in A:

A_chCount[int(ch)] = A_chCount[int(ch)] + 1

for ch in B:

B_chCount[int(ch)] = B_chCount[int(ch)] + 1

Anagrams if and only if characters count is exactly the same

return A_chCount == B_chCount

Algorithm 3 Detect whether two strings are anagrams

Require: input is two strings
Ensure: output True if anagrams and False otherwise
1: if |A| ≠ |B| then
2: return false
3: end if

4: Acount ← Bcount ← []× 26

5: for ch ∈ A do
6: Acount[ch]← Acount[ch] + 1
7: end for

8: for ch ∈ B do
9: Bcount[ch]← Bcount[ch] + 1

10: end for

11: return Acount == Bcount

6

	Exercises
	1.1.4
	1.1.8
	1.2.5
	1.2.9
	1.3.1
	1.3.10
	1.4.2
	1.4.10

