
Lab 09 - Chapter 9

I. El-Shaarawy & M. Touny

December 16, 2023

Contents

Exercises 2
9.1.1 . 2
9.1.15 . 2
9.2.3 . 3
9.2.5 . 3
9.3.1 . 4
9.3.7 . 4
9.4.5 . 4
9.4.7 . 5

1

Exercises

9.1.1

Hints.

� Use quotient and mod operations.

� Observe why the quotient yields the maximum possible count of some coin.

Solution.

input: non negative amount n, and a decreasing array of coins D

output: array C where C[i] is number of coins of ith denomination D[i]

def greedyCoins(integer n, D[1..m])

for each coin

for i in 1..m

take max possible number of it

C[i] = floor(n/D[i])

remaining amount for next iteration

n = n \mod D[i]

if there is still a remaining amount

if n != 0 return "no solution"

otherwise given n is partitioned by coins

return C

9.1.15

Homework.

9.2.3

Hints.

� Observe Kruskal works with global edges, unlike Prim which searches within local
neighbour edges.

� What is error you think we will encounter upon running Kruskal on a a tree with more
than one component?

� Why does looping on |V | − 1 works in Kruskal?

� Modify the while condition to accommodate any forest.

Solution.

Modify the while condition in Kruskal to be ecounter < |E|, So it terminates if there are
no more edges.

2

Bonus. Modify Prim then use it as a subroutine to solve the general forest case.

9.2.5

Homework.

9.3.1

Hints.

� (c) Use Transform-and-conquer strategy.

� (c) Fixing vertices, What kind of modification is required on edges?

� (d) Use Transform-and-conquer strategy.

� (d) We will use Dijkstra as a subroutine, So the graph will be transformed to the usual
form given in the book.

Solution.

(a)

A data structure which considers directed edges.

(b)

Same algorithm. You may terminate once you find the destination.

(d)

Each vertex vi is mapped to vsti and veni , with directed edge (vsti , veni) whose weight is the
number labeled on vi. Any vertex in G neighbour to vi, can travel to vsti but not veni in G′.
Only vertices veni but not vsti can travel to other vertices. Those edges in G′ are assigned zero
weights.

input: graph G with weighted vertices

output: graph G with weighted edges and no weighted vertices

def vertexWeightToEdgeWeight(G)

construct empty graph G’

for each vertex v in G(V)

add vertex v_st to G’

add vertex v_en to G’

set (v_st, v_en).weight to v.weight

add edge (v_st, v_en) to G’

for each edge e = {a,b} in G(E)

set (a_en, b_st).weight = 0

add edge (a_en, b_st) to G’

set (b_en, a_st).weight = 0

3

add edge (b_en, a_st) to G’

return G’

(c)

Set the destination as source then reverse paths. If graph is directed reverse paths before
running the algorithm also.

input: graph G

output: same graph but whose edges are reversed

def reverseEdges(G)

construct empty graph G’

clone vertices G’(V) = G(V)

for every vertex v in G(V)

for every edge e = (v,t) in G(E)

add edge (t,v) to G’

return G’

input: undirected graph G, destination d

output: shortest-paths of given d

def undirectedGraphSingleDistination(G, d)

compute Dijkstra(G, d) in graph G

return reverseEdges(G)

input: directed graph G, destination d

output: shortest-paths of given d

def directedGraphSingleDestination(G, d)

G = reverseEdges(G)

compute Dijkstra(G, d) in graph G

return reverseEdges(G)

Homework.

A data-structure based implementation is left to students. In fact this is an excellent illustration
of abstraction in algorithm design.

9.3.7

Homework.

9.4.5

Homework.

4

9.4.7

Hints.

� A basic recursive algorithm traversal works.

Solution.

def allHuffmanCodes(root)

if root is NULL

return []

if root is a leaf

if root.rightChild is NULL and root.leftChild is NULL

return [root.character]

if exactly one child is NULL, Concatenating an empty list does no harm

childCodes = allHuffmanCodes(root.leftChild) + allHuffmanCodes(root.rightChild)

prefix each code in child with root’s character

return [root.character + code for code in childCodes]

We leave it to students to modify the algorithm so that it generates a 2d-array of symbols-
codes as a homework.

5

	Exercises
	9.1.1
	9.1.15
	9.2.3
	9.2.5
	9.3.1
	9.3.7
	9.4.5
	9.4.7

