
Chapter Goals
• Interpreting and inferring conclusions from knowledge representations.

General Guidelines
• Tinkering with examples by tuning their code, Gaining more familiarity and intuition.
• Visualizing output representations.

Modules & Datasets Setup
@title
!apt-get install default-jdk
!apt install libgraphviz-dev

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
default-jdk is already the newest version (2:1.11-72build2).
0 upgraded, 0 newly installed, 0 to remove and 18 not upgraded.
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
libgraphviz-dev is already the newest version (2.42.2-6).
0 upgraded, 0 newly installed, 0 to remove and 18 not upgraded.

@title
!pip install pygraphviz
!pip install python-javabridge
!pip install python-weka-wrapper3
!pip install sklearn-weka-plugin

Requirement already satisfied: pygraphviz in
/usr/local/lib/python3.10/dist-packages (1.11)
Requirement already satisfied: python-javabridge in
/usr/local/lib/python3.10/dist-packages (4.0.3)
Requirement already satisfied: numpy>=1.20.1 in
/usr/local/lib/python3.10/dist-packages (from python-javabridge)
(1.23.5)
Requirement already satisfied: python-weka-wrapper3 in
/usr/local/lib/python3.10/dist-packages (0.2.14)
Requirement already satisfied: python-javabridge>=4.0.0 in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(4.0.3)

Requirement already satisfied: numpy in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(1.23.5)
Requirement already satisfied: packaging in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(23.1)
Requirement already satisfied: configurable-objects in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(0.0.1)
Requirement already satisfied: simple-data-flow in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(0.0.1)
Collecting sklearn-weka-plugin
 Using cached sklearn-weka-plugin-0.0.7.tar.gz (69 kB)
 Preparing metadata (setup.py) ... ent already satisfied: numpy in
/usr/local/lib/python3.10/dist-packages (from sklearn-weka-plugin)
(1.23.5)
Requirement already satisfied: python-weka-wrapper3>=0.2.5 in
/usr/local/lib/python3.10/dist-packages (from sklearn-weka-plugin)
(0.2.14)
Collecting sklearn (from sklearn-weka-plugin)
 Using cached sklearn-0.0.post9.tar.gz (3.6 kB)
 Preparing metadata (setup.py) ... ent already satisfied: python-
javabridge>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from
python-weka-wrapper3>=0.2.5->sklearn-weka-plugin) (4.0.3)
Requirement already satisfied: packaging in
/usr/local/lib/python3.10/dist-packages (from python-weka-
wrapper3>=0.2.5->sklearn-weka-plugin) (23.1)
Requirement already satisfied: configurable-objects in
/usr/local/lib/python3.10/dist-packages (from python-weka-
wrapper3>=0.2.5->sklearn-weka-plugin) (0.0.1)
Requirement already satisfied: simple-data-flow in
/usr/local/lib/python3.10/dist-packages (from python-weka-
wrapper3>=0.2.5->sklearn-weka-plugin) (0.0.1)
Building wheels for collected packages: sklearn-weka-plugin, sklearn
 Building wheel for sklearn-weka-plugin (setup.py) ...
e=sklearn_weka_plugin-0.0.7-py3-none-any.whl size=27346
sha256=ed945d48776e18a13f7f84af265164b3d578685a74a80126648edffb1981ef9
c
 Stored in directory:
/root/.cache/pip/wheels/51/6d/e5/458ea9a1be729f39ed4cf14aab2f87eb51470
47b690402605b
 Building wheel for sklearn (setup.py) ... e=sklearn-0.0.post9-py3-
none-any.whl size=2952
sha256=b540221fcd6bd5137c2cc05e390e687f268713d1df3f66020e66bcb15c78387
d
 Stored in directory:
/root/.cache/pip/wheels/33/a3/d2/092b519e9522b4c91608b7dcec0dd9051fa1b
ff4c45f4502d1

Successfully built sklearn-weka-plugin sklearn
Installing collected packages: sklearn, sklearn-weka-plugin
Successfully installed sklearn-0.0.post9 sklearn-weka-plugin-0.0.7

@title
#Restart runtime after installing the dependencies

@title
import os
import glob
import numpy as np
import pandas as pd
import weka.core.jvm as jvm
from weka.core import converters
import matplotlib.pyplot as plt

@title
data_dir = 'data'

@title
#!rm -r weka
#!rm -r data

@title
#jvm.stop()
jvm.start(packages=True)

INFO:weka.core.jvm:JVM already running, call jvm.stop() first

@title
Preparing Datasets
if not os.path.exists(data_dir):
 !mkdir $data_dir
 for file in ['airline.arff', 'breast-cancer.arff', 'contact-
lenses.arff', 'cpu.arff', 'cpu.with.vendor.arff', 'credit-g.arff',
'diabetes.arff', 'glass.arff', 'hypothyroid.arff', 'ionosphere.arff',
'iris.2D.arff', 'iris.arff', 'labor.arff', 'segment-challenge.arff',
'segment-test.arff', 'soybean.arff', 'supermarket.arff',
'unbalanced.arff', 'vote.arff', 'weather.nominal.arff',
'weather.numeric.arff',]:
 url =
'https://git.cms.waikato.ac.nz/weka/weka/-/raw/main/trunk/wekadocs/
data/' + file
 !wget -P $data_dir $url
 loader =
converters.Loader(classname="weka.core.converters.ArffLoader")
 saver =
converters.Saver(classname="weka.core.converters.CSVSaver")
 for file in glob.glob(os.path.join(data_dir, '*.arff')):
 dataset = loader.load_file(file)
 filename, file_extension = os.path.splitext(file)

 saver.save_file(dataset, filename + '.csv')
 !wget -P $data_dir https://raw.githubusercontent.com/Rytuo/ITMO-
CT/master/Others/AdvancedML/data/OpenML/data/1438.arff
 !rm -r weka

3.1 Tables
Weather dataset
fileName = "weather.numeric.csv"
df = pd.read_csv(f"data/{fileName}")

df

 outlook temperature humidity windy play
0 sunny 85 85 False no
1 sunny 80 90 True no
2 overcast 83 86 False yes
3 rainy 70 96 False yes
4 rainy 68 80 False yes
5 rainy 65 70 True no
6 overcast 64 65 True yes
7 sunny 72 95 False no
8 sunny 69 70 False yes
9 rainy 75 80 False yes
10 sunny 75 70 True yes
11 overcast 72 90 True yes
12 overcast 81 75 False yes
13 rainy 71 91 True no

display only rows with sunny outlook
df[df["outlook"]=="sunny"]

 outlook temperature humidity windy play
0 sunny 85 85 False no
1 sunny 80 90 True no
7 sunny 72 95 False no
8 sunny 69 70 False yes
10 sunny 75 70 True yes

Task 3.1.1 Today's outlook is sunny, temp is 85, humidity is 85, and not windy. Based on the
decision table. Shoud we play?

Answer.

Task 3.1.2 Today's outlook is sunny, temp is 85, humidity is 85, and windy. Should we play?

Answer.

Task 3.1.3 Think of a scenario where that knowledge representation is useful.

Answer.

Task 3.1.4 display the dataframe but with temperature at least 80.

Challenge 3.1.5 Pick-up a dataset, Design a metric, and accordingly select a subset of the data as
a decision table, and evaluate its performance.

3.2 Linear Models
CPU dataset
fileName = "cpu.csv"
df = pd.read_csv(f"data/{fileName}")

df

 MYCT MMIN MMAX CACH CHMIN CHMAX class
0 125 256 6000 256 16 128 198
1 29 8000 32000 32 8 32 269
2 29 8000 32000 32 8 32 220
3 29 8000 32000 32 8 32 172
4 29 8000 16000 32 8 16 132
..
204 124 1000 8000 0 1 8 42
205 98 1000 8000 32 2 8 46
206 125 2000 8000 0 2 14 52
207 480 512 8000 32 0 0 67
208 480 1000 4000 0 0 0 45

[209 rows x 7 columns]

Scatter Plot
plt.scatter(df["CACH"], df["CHMIN"])

<matplotlib.collections.PathCollection at 0x7d3b253cb0a0>

Linear model visualized

Define the linear equation: y = mx + b
m = 2.47 # Slope
b = 37.06 # Y-intercept

Generate x-values and y-values using the equation
x_values = np.linspace(0, 250, 100) # Adjust the range and number of
points as needed
y_values = (m * x_values) + b

Plot the scatter and line
plt.plot(x_values, y_values, color="red")

--

NameError Traceback (most recent call
last)
<ipython-input-1-736a441794c0> in <cell line: 8>()
 6
 7 # Generate x-values and y-values using the equation
----> 8 x_values = np.linspace(0, 250, 100) # Adjust the range and
number of points as needed
 9 y_values = (m * x_values) + b
 10

NameError: name 'np' is not defined

Both scatter and linear model on the same plot

Define the linear equation: y = mx + b
m = 2.47 # Slope
b = 37.06 # Y-intercept

Generate x-values and y-values using the equation
x_values = np.linspace(0, 250, 100) # Adjust the range and number of
points as needed
y_values = (m * x_values) + b

Plot the scatter and line
plt.xlim(0, 250) # Set the x-axis range
plt.ylim(0, 50) # Set the y-axis range

plt.plot(x_values, y_values, color="red")
plt.scatter(df["CACH"], df["CHMIN"])

<matplotlib.collections.PathCollection at 0x7d3b24e22590>

Task 3.2.1 From the scatter, How are CACH and CHMIN correlated? Is the correlation strong?

Answer

Task 3.2.2 Is the linear model well-fitting? Do you think it is reliable to predict by it?

Answer

Task 3.2.3 Visualize a different linear model where y-column is negatively correlated with x-
column.

Task 3.2.4 The scatter plot ignores data density. How can we tinker with data to learn about the
dense part?

Challenge 3.2.4 Is it possible for a linear model to have more than two variables. How can we
visualize it? Demonstrate on a simple dataset.

Challenge 3.2.5 Suggest an alternative visualization method to detect density, apply it on the
given data, and infer the new information not in the scatter plot.

3.3 Trees
Iris dataset
fileName = "iris.csv"
df = pd.read_csv(f"data/{fileName}")

df

 sepallength sepalwidth petallength petalwidth class
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
..
145 6.7 3.0 5.2 2.3 Iris-virginica
146 6.3 2.5 5.0 1.9 Iris-virginica
147 6.5 3.0 5.2 2.0 Iris-virginica
148 6.2 3.4 5.4 2.3 Iris-virginica
149 5.9 3.0 5.1 1.8 Iris-virginica

[150 rows x 5 columns]

from sklearn.tree import DecisionTreeClassifier
from sklearn import tree

features_names = list(df.columns); features_names.remove("class")

Construction
clf = DecisionTreeClassifier(random_state=42, max_leaf_nodes=5)
clf.fit(
 df[["sepallength","sepalwidth","petallength","petalwidth"]],
 df["class"]
)

Visualize
tree.plot_tree(clf, filled=True, feature_names=features_names,
class_names=df["class"].unique())
plt.show()

#from weka.classifiers import Classifier

#data = loader.load_file("data/iris.arff")

#cls = Classifier(classname="weka.classifiers.trees.J48", options=["-
C", "0.3"])
#cls.build_classifier(data)

#print(cls)

#import weka.plot.graph as graph # NB: pygraphviz and PIL are
required
#graph.plot_dot_graph(cls.graph)

Task 3.3.1 What is the feature most effective to decide a class?

Answer

Task 3.3.2 What do you infer from a tree whose number of leafs is too large or too small?

Answer

Task 3.3.3 Select a partition of rows so that the generated decision tree has only two leafs with
one decision node. Visualize to demonstrate.

Challenge 3.3.4 Suggest an approach to reduce the depth of the tree and apply it.

3.4 Rules
Classification
Classifying whether a student is a good one according to logical
rules.
def isGoodStudent(highGPA, extraActivities, healthyFood):
 if highGPA and healthyFood:
 print("YES")
 if extraActivities:
 print("YES")

isGoodStudent(highGPA=True, extraActivities=True, healthyFood=False)

YES

Task 3.4.1 According to the above classifier, Classify whether a student who eats healthy-food
and does extra-activities is good.

Task 3.4.2 Modify the classifier so that it prints a unique output, including "NO" in case none of
the two conditions are satisfied.

Task 3.4.3 Write an equivalent XOR function with exactly one conditional statement. Try all
possible inputs to show both functions are logically equivalent.

returns 1 only if exactly one of x or y equals 1
def myXOR(x, y):

 if x==1 and y==0:
 return 1
 if x==0 and y==1:
 return 1
 if x==0 and y==0:
 return 0
 if x==1 and y==1:
 return 1

Answer

Challenge 3.4.4 Research good qualities in symbolic AI not found in modern machine learning.
Formulate scenarios where these qualitities are mandatory.

Rules with Exceptions
Task 3.4.5 Create a new attribute for isGoodStudent, and through it create a new EXCEPTION
rule. Modify the code to accommodate it.

Association
Task 3.4.6

Rename class column in iris dataset to an attribute name of your choice. Guess the output of
association.

Weather dataset
fileName = "weather.nominal.csv"
df = pd.read_csv(f"data/{fileName}")

df

 outlook temperature humidity windy play
0 sunny hot high False no
1 sunny hot high True no
2 overcast hot high False yes
3 rainy mild high False yes
4 rainy cool normal False yes
5 rainy cool normal True no
6 overcast cool normal True yes
7 sunny mild high False no
8 sunny cool normal False yes
9 rainy mild normal False yes
10 sunny mild normal True yes
11 overcast mild high True yes
12 overcast hot normal False yes
13 rainy mild high True no

Task 3.4.7 What is the coverage and accuracy of the rule IF outlook == sunny THEN
temperature == hot? Compute it by code

Recall.

• Coverage: Number of instances for which the rule applies.
• Accuracy: Ratio of correct instances out of instances for which the antecedent (premise)

applies.

Task 3.4.8 For rule 1 and rule 2 below, Select a relationship (equality, less than, greater or
equal, ..etc) between them, in regards to coverage and accuracy. You can compute and display
dataframes subsets to guess the answer.

• Rule 1: IF windy == false and play == no THEN outlook == sunny and
humidity == high

• Rule 2: IF humidity == high and windy == false and play == no THEN
outlook == sunny

Challenge 3.4.9 What kind of useful decision can we take out of association?

Challenge 3.4.10 Is associativity equivalent to causality?

More Expressive Rules
Shapes
df = pd.DataFrame({
 "Width": [2,3,4,7,7],
 "Height": [4, 6, 3, 8, 6],
 "Sides": [4, 4, 4, 3, 3],
 "class": ["Standing", "Standing", "Lying", "Standing", "Lying"]
})

df

 Width Height Sides class
0 2 4 4 Standing
1 3 6 4 Standing
2 4 3 4 Lying
3 7 8 3 Standing
4 7 6 3 Lying

Task 3.4.11 Think with geometry. How can we learn about the class given the features?

Answer

Task 3.4.12 Are the given numeric features representable of your thoughts?

Answer

Task 3.4.13 Engineer new features, reflecting your ideas.

Challenge 3.4.14 Demonstrate with interpretable models, That the model quality out of the new
engineered features is better than the given ones.

3.5 Instance-based Representation
df = pd.DataFrame({
 "Width": [1, 1, 2, 2, 1.5, 5, 5, 6, 6],
 "Height": [1, 2, 1, 2, 1.5, 5, 6, 5, 6]
})

df.plot.scatter(x = "Width", y = "Height")

<Axes: xlabel='Width', ylabel='Height'>

Task 3.5.1 Select some representative instances of multiple groups, whereby instances in each
group are similar. Modify the dataset so that it memorizes only those representative instances.
Give a corresponding class to each.

Task 3.5.2 Given input (Height = 1, Width =1), which example is it closest to? Accordingly
how would you classify it?

Challenge 3.5.3 Research a criteria by which we can select a subset of dataset. Think of a
scenario in which the illustrated memorization method is useful.

3.6 Clusters
Create a dataframe with hardcoded numbers
df = pd.DataFrame({
 "x": [1, 2, 3, 4, 7, 8, 9, 10],
 "y": [10, 9, 8, 7, 4, 3, 2, 1],
 "class": [0, 0, 0, 0, 1, 1, 1, 1]
})

df

 x y class
0 1 10 0
1 2 9 0
2 3 8 0
3 4 7 0
4 7 4 1
5 8 3 1
6 9 2 1
7 10 1 1

plt.scatter(
 df["x"],
 df["y"],
 c=df["class"].apply(lambda x: "red" if x == 0 else "green" if x ==
1 else "blue")
)

<matplotlib.collections.PathCollection at 0x7d1407474a30>

Task 3.6.1 How many clusters do we have? Which class corresponds to which colour? Guess a
key feature in each cluster

Task 3.6.2 Design a classification rule, which recomputes the classes given the x and y.

Task 3.6.3 Given input (x = 2, y = 6), following your classification, which class does it
belong it? Is the new visualization considering the new input reasonable?

Challenge 3.6.4 Research different visualizations of clusters.

Project. Phase 3
• Explore and analyze knowledge representations and whether they suit your use-case.
• Association mining.

	Chapter Goals
	General Guidelines
	Modules & Datasets Setup
	3.1 Tables
	3.2 Linear Models
	3.3 Trees
	3.4 Rules
	Classification
	Rules with Exceptions
	Association
	More Expressive Rules

	3.5 Instance-based Representation
	3.6 Clusters
	Project. Phase 3

