Chapter Goals

- Dealing with missing values in learning.
- Modeling, while avoiding over-fitting, by pruning (tree and rules)
- Industrial algorithms

General Lab Guidlines

- Visualization.
- Modifiable code snippets.

Further

• How is *cost complexity pruning* a post-pruning method, while a tree is built from scratch? Any library implementing the subtree raise method?

```
# Loading a dataset
# dataset names: "airline", "breast-cancer", "contact-lenses", "cpu",
"cpu.with.vendor", "credit-g", "diabetes", "glass", "hypothyroid",
"ionosphere", "iris.2D", "iris", "labor", "segment-challenge",
"segment-test", "soybean", "supermarket", "unbalanced", "vote",
"weather.nominal", "weather.numeric"
# df = pd.read_csv("data/weather.numeric.csv")
# instances = loader.load_file("data/weather.numeric.arff")
```

Modules & Datasets Setup

@title

!apt-get install default-jdk
!apt install libgraphviz-dev

Reading package lists... Done Building dependency tree... Done Reading state information... Done default-jdk is already the newest version (2:1.11-72build2). 0 upgraded, 0 newly installed, 0 to remove and 19 not upgraded. Reading package lists... Done Building dependency tree... Done Reading state information... Done libgraphviz-dev is already the newest version (2.42.2-6). 0 upgraded, 0 newly installed, 0 to remove and 19 not upgraded. # @title !pip install pygraphviz !pip install python-javabridge !pip install python-weka-wrapper3 !pip install sklearn-weka-plugin Requirement already satisfied: pygraphviz in /usr/local/lib/python3.10/dist-packages (1.11) Requirement already satisfied: python-javabridge in /usr/local/lib/python3.10/dist-packages (4.0.3) Requirement already satisfied: numpy>=1.20.1 in /usr/local/lib/python3.10/dist-packages (from python-javabridge) (1.23.5)Requirement already satisfied: python-weka-wrapper3 in /usr/local/lib/python3.10/dist-packages (0.2.14) Requirement already satisfied: python-javabridge>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3) (4.0.3)Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3) (1.23.5)Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3) (23.2)Requirement already satisfied: configurable-objects in /usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3) (0.0.1)Requirement already satisfied: simple-data-flow in /usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3) (0.0.1)Requirement already satisfied: sklearn-weka-plugin in /usr/local/lib/python3.10/dist-packages (0.0.7) Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from sklearn-weka-plugin) (1.23.5)Requirement already satisfied: python-weka-wrapper3>=0.2.5 in /usr/local/lib/python3.10/dist-packages (from sklearn-weka-plugin) (0.2.14)Requirement already satisfied: sklearn in /usr/local/lib/python3.10/dist-packages (from sklearn-weka-plugin) (0.0.post10) Requirement already satisfied: python-javabridge>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from python-wekawrapper3>=0.2.5->sklearn-weka-plugin) (4.0.3) Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from python-wekawrapper3>=0.2.5->sklearn-weka-plugin) (23.2) Requirement already satisfied: configurable-objects in /usr/local/lib/python3.10/dist-packages (from python-wekawrapper3>=0.2.5->sklearn-weka-plugin) (0.0.1)

```
Requirement already satisfied: simple-data-flow in
/usr/local/lib/python3.10/dist-packages (from python-weka-
wrapper3>=0.2.5->sklearn-weka-plugin) (0.0.1)
# @title
#Restart runtime after installing the dependencies
# @title
import os
import glob
import numpy as np
import pandas as pd
import weka.core.jvm as jvm
from weka.core import converters
import matplotlib.pyplot as plt
# @title
data dir = 'data'
# @title
#!rm -r weka
#!rm -r data
# @title
#ivm.stop()
jvm.start(packages=True)
DEBUG:weka.core.jvm:Adding bundled jars
DEBUG:weka.core.jvm:Classpath=['/usr/local/lib/python3.10/dist-
packages/javabridge/jars/rhino-1.7R4.jar',
'/usr/local/lib/python3.10/dist-packages/javabridge/jars/runnablegueue
.jar',
'/usr/local/lib/python3.10/dist-packages/javabridge/jars/cpython.jar'
'/usr/local/lib/python3.10/dist-packages/weka/lib/arpack_combined.jar'
, '/usr/local/lib/python3.10/dist-packages/weka/lib/mtj.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/core.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/weka.jar'
'/usr/local/lib/python3.10/dist-packages/weka/lib/python-weka-
wrapper.jar']
DEBUG:weka.core.jvm:MaxHeapSize=default
DEBUG:weka.core.jvm:Package support enabled
# @title
# Preparing Datasets
if not os.path.exists(data dir):
    !mkdir $data dir
    for file in ['airline.arff', 'breast-cancer.arff', 'contact-
lenses.arff', 'cpu.arff', 'cpu.with.vendor.arff', 'credit-g.arff'
'diabetes.arff', 'glass.arff', 'hypothyroid.arff', 'ionosphere.arff',
'iris.2D.arff', 'iris.arff', 'labor.arff', 'segment-challenge.arff',
'segment-test.arff', 'soybean.arff', 'supermarket.arff',
```

```
'unbalanced.arff', 'vote.arff', 'weather.nominal.arff',
'weather.numeric.arff',]:
        url =
'https://git.cms.waikato.ac.nz/weka/weka/-/raw/main/trunk/wekadocs/
data/' + file
        !wget -P $data dir $url
    loader =
converters.Loader(classname="weka.core.converters.ArffLoader")
    saver =
converters.Saver(classname="weka.core.converters.CSVSaver")
    for file in glob.glob(os.path.join(data dir, '*.arff')):
        dataset = loader.load file(file)
        filename, file extension = os.path.splitext(file)
        saver.save file(dataset, filename + '.csv')
    !wget -P $data dir https://raw.githubusercontent.com/Rytuo/ITMO-
CT/master/Others/AdvancedML/data/OpenML/data/1438.arff
    !rm -r weka
import weka.core.packages as packages
packages.install package("simpleEducationalLearningSchemes")
packages.install package("generalizedSequentialPatterns")
packages.install package("classAssociationRules")
from weka.core.converters import Loader
loader = Loader(classname="weka.core.converters.ArffLoader")
```

6.1 Decision Trees

Numeric Attributes

```
# Discretization: Converting numeric to categorical.
import pandas as pd
sr = pd.Series([10, 20, 15, 5, 30, 25, 7, 12, 17, 22])
binEdges = [0, 10, 20, 30]
binLabels = ['Low', 'Medium', 'High']
categorized sr = pd.cut(sr, bins=binEdges, labels=binLabels)
categorized sr
0
        Low
1
     Medium
2
     Medium
3
        Low
4
       High
```

```
5 High
6 Low
7 Medium
8 Medium
9 High
dtype: category
Categories (3, object): ['Low' < 'Medium' < 'High']</pre>
```

Task 1.1 Experiment with some dataset, and intuitively decide the number of labels.

Task 1.2 Think of a general heuristic/strategy to optimize the number of labels.

Missing Values

```
# Use these probabilities to classify the row with missing value
# Assume the row has some label, then multiply the classification
result by the corresponding probability
# Aggregate all classification answers
import pandas as pd
import random
# Create a sample DataFrame with missing values
df = pd.DataFrame({
    "F1": [random.choice([1, 2, 3, None]) for _ in range(30)],
    "F2": [random.choice(['A', 'B', 'C', None]) for _ in range(30)]
  }
)
# Function to compute sums and probabilities
def probabilitiesOfMissing(df, featureStr):
    # Drop rows with missing values in the feature
    df no missing = df.dropna(subset=[featureStr])
    # Calculate the sum of distinct values for the feature
    sums = df no missing[featureStr].value counts()
    # Calculate the total sum
    total sum = sums.sum()
    # Calculate the probability for each distinct value
    probabilities = sums / total sum
    return sums, probabilities
# Compute sums and probabilities for Feature 2
sums2, probabilities2 = probabilitiesOfMissing(df, "F2")
print("Probabilities for F2:")
print(probabilities2)
```

```
Probabilities for F2:
A 0.476190
C 0.380952
B 0.142857
Name: F2, dtype: float64
```

Task 1.3 Contrast this heuristic with dropping null values and with substituting missings by the average. Try to quantify your conclusions on some dataset.

Pruning

```
# cost complexity pruning
# reference:
https://scikit-learn.org/stable/auto examples/tree/plot cost complexit
y pruning.html
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load iris
from sklearn.model selection import train test split
# Load the Iris dataset and split it into training and testing sets
iris = load iris(); X = iris.data; y = iris.target
X train, X test, y train, y test = train test split(X, y,
test_size=0.3, random_state=42)
# Train a decision tree classifier
clf = DecisionTreeClassifier(random state=42)
clf.fit(X train, y train)
# Prune the existing decision tree using the prune path method
path = clf.cost complexity pruning path(X train, y train)
ccp alphas, impurities = path.ccp alphas, path.impurities
# Choose the alpha value for pruning
alpha toPrune = 0.03 # You can adjust this value based on your data
# Prune the tree using the chosen alpha value
prunedTree = DecisionTreeClassifier(ccp_alpha=alpha_toPrune,
random state=42)
prunedTree.fit(X train, y train)
Original Decision Tree Accuracy: 1.00
Pruned Decision Tree Accuracy: 0.98
# Original Tree
import matplotlib.pyplot as plt
from sklearn.tree import plot tree
plt.figure(figsize=(15, 10))
```

```
plot_tree(clf, filled=True, feature_names=iris.feature_names,
class_names=iris.target_names)
plt.show()
```


Pruned Tree

```
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree
```

```
# Plot the decision tree
plot_tree(prunedTree, filled=True, feature_names=iris.feature_names,
class_names=iris.target_names)
plt.show()
```


Task 1.4 Construct couple of decision trees, and compare accuracies vs depth or nodes number. Through a visualization of these two measures, Guess the optimal tree.

6.2 Classification Rules

Criteria for Choosing Tests

Task 2.1 Refer back to Lab 04, Pick-up a rule-based algorithm, and assess error rate of a rule of your choice. Alternatively, You can use the code snippet of *Generating Good Rules* section.

Missing Values, Numeric Attributes

Task 2.2 Refer back to Lab 04, Pick-up a rule-based algorithm, and some instance of your choice. Remove a feature from the instance, then re-classify it. You can use the code snippet of *Generating Good Rules* to aid you in analysis.

Generating Good Rules

```
# Create a dummy DataFrame with random data
import pandas as pd
import random
df = pd.DataFrame({
    "F1": [random.choice(['A', 'B', 'C']) for _ in range(10)],
```

```
"F2": [random.choice(['X', 'Y', 'Z']) for _ in range(10)],
    "class": [random.choice([0, 1]) for _ in range(10)]
})
Coverage of the rule for F1 = A: 5 rows
Accuracy of the rule: 40.00%
# Coverate and Accuracy of a hand-crafted rule
import numpy as np
# Define a rule. If F1 = A, return 0
def myRule1(row):
  if row["F1"] == "A":
    return 0
  return np.NaN
# instances the rule is applicable on
# apply predicted class by our rule
instancesCovered = df.apply(myRule1,
axis=1).dropna().to frame(name="predictedClass")
# join data's class (ground truth)
instancesCovered = instancesCovered.join(df["class"])
# Coverage: Number of instances the rule is applicable on
ruleCoverage = len( instancesCovered )
# Number of correctly classified instances
count CorrectlyClassified = (instancesCovered["predictedClass"] ==
instancesCovered["class"]).value counts()[True]
# Accuracy: Number of correctly classified instances, out of covered
instances
ruleAccuracy = count_CorrectlyClassified / ruleCoverage
print(f"Coverage: {ruleCoverage}")
print(f"Accuracy: {ruleAccuracy:.2%}")
Coverage: 5
Accuracy: 60.00%
```

Task 2.3 Modify myRule1 function to increase coverage and accuracy.

Task 2.4 Partition the dataset into *training* and *testing*. Apply *task 2.4* on *training* data without seeing *testing*. Compute accuracy and measures on *testing*. Note since data were randomly generated, You shouldn't expect rules well-generalizing

Using Global Optimization

```
# train model
# from weka.classifiers import Classifier
# cls = Classifier(classname="weka.classifiers.rules.JRip")
# cls.build_classifier(instances)
```

Task 2.5 Refer back to Lab 04, Use the above code snipper on the same template of the lab.

Rules with Exceptions

Task 2.6 Refer back to Lab 04, on XOR classifier. Modify the code so that it has a default output with exceptions. Outputs must be equivalent to the original code.

6.3 Association Rules

Sources

- FP-Growth by Weka
- Generalized Sequential Petterns by Weka
- CBA by weka

Generalized Sequential Petterns

```
# weather nominal dataset
instances = loader.load file("data/weather.nominal.arff")
instances
@relation weather.symbolic
@attribute outlook {sunny,overcast,rainy}
@attribute temperature {hot,mild,cool}
@attribute humidity {high,normal}
@attribute windy {TRUE,FALSE}
@attribute play {yes,no}
@data
sunny,hot,high,FALSE,no
sunny,hot,high,TRUE,no
overcast, hot, high, FALSE, yes
rainy,mild,high,FALSE,yes
rainy,cool,normal,FALSE,yes
rainy,cool,normal,TRUE,no
overcast, cool, normal, TRUE, yes
sunny,mild,high,FALSE,no
sunny,cool,normal,FALSE,yes
rainy,mild,normal,FALSE,yes
sunny,mild,normal,TRUE,yes
```

```
overcast, mild, high, TRUE, yes
overcast, hot, normal, FALSE, yes
rainy,mild,high,TRUE,no
# train model
from weka.associations import Associator
associator =
Associator(classname="weka.associations.GeneralizedSequentialPatterns"
)
associator.build associations(instances)
# model inspection
associator.description
<bound method OptionHandler.description of
Apriori
_____
Minimum support: 0.15 (2 instances)
Minimum metric <confidence>: 0.9
Number of cycles performed: 17
Generated sets of large itemsets:
Size of set of large itemsets L(1): 12
Size of set of large itemsets L(2): 47
Size of set of large itemsets L(3): 39
Size of set of large itemsets L(4): 6
Best rules found:
1. outlook=overcast 4 ==> play=yes 4 <conf:(1)> lift:(1.56) lev:
(0.1) [1] conv:(1.43)
2. temperature=cool 4 ==> humidity=normal 4 <conf:(1)> lift:(2)
lev:(0.14) [2] conv:(2)
3. humidity=normal windy=FALSE 4 ==> play=yes 4 <conf:(1)> lift:
(1.56) lev:(0.1) [1] conv:(1.43)
4. outlook=sunny play=no 3 ==> humidity=high 3 <conf:(1)> lift:(2)
lev:(0.11) [1] conv:(1.5)
5. outlook=sunny humidity=high 3 ==> play=no 3 <conf:(1)> lift:
(2.8) lev:(0.14) [1] conv:(1.93)
6. outlook=rainy play=yes 3 ==> windy=FALSE 3 <conf:(1)> lift:
(1.75) lev:(0.09) [1] conv:(1.29)
7. outlook=rainy windy=FALSE 3 ==> play=yes 3 <conf:(1)> lift:
(1.56) lev:(0.08) [1] conv:(1.07)
8. temperature=cool play=yes 3 ==> humidity=normal 3 <conf:(1)>
lift:(2) lev:(0.11) [1] conv:(1.5)
 9. outlook=sunny temperature=hot 2 ==> humidity=high 2 <conf:(1)>
```

```
lift:(2) lev:(0.07) [1] conv:(1)
10. temperature=hot play=no 2 ==> outlook=sunny 2 <conf:(1)> lift:
(2.8) lev:(0.09) [1] conv:(1.29)
>
```