
Chapter Goals
• Dealing with missing values in learning.
• Modeling, while avoiding over-fitting, by pruning (tree and rules)
• Industrial algorithms

General Lab Guidlines
• Visualization.
• Modifiable code snippets.

Further
• How is cost complexity pruning a post-pruning method, while a tree is built from 

scratch? Any library implementing the subtree raise method?

# Loading a dataset
# dataset names: "airline", "breast-cancer", "contact-lenses", "cpu", 
"cpu.with.vendor", "credit-g", "diabetes", "glass", "hypothyroid", 
"ionosphere", "iris.2D", "iris", "labor", "segment-challenge", 
"segment-test", "soybean", "supermarket", "unbalanced", "vote", 
"weather.nominal", "weather.numeric"
# df = pd.read_csv("data/weather.numeric.csv")
# instances = loader.load_file("data/weather.numeric.arff")

Modules & Datasets Setup
# @title
!apt-get install default-jdk
!apt install libgraphviz-dev

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
default-jdk is already the newest version (2:1.11-72build2).
0 upgraded, 0 newly installed, 0 to remove and 19 not upgraded.
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
libgraphviz-dev is already the newest version (2.42.2-6).
0 upgraded, 0 newly installed, 0 to remove and 19 not upgraded.



# @title
!pip install pygraphviz
!pip install python-javabridge
!pip install python-weka-wrapper3
!pip install sklearn-weka-plugin

Requirement already satisfied: pygraphviz in 
/usr/local/lib/python3.10/dist-packages (1.11)
Requirement already satisfied: python-javabridge in 
/usr/local/lib/python3.10/dist-packages (4.0.3)
Requirement already satisfied: numpy>=1.20.1 in 
/usr/local/lib/python3.10/dist-packages (from python-javabridge) 
(1.23.5)
Requirement already satisfied: python-weka-wrapper3 in 
/usr/local/lib/python3.10/dist-packages (0.2.14)
Requirement already satisfied: python-javabridge>=4.0.0 in 
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3) 
(4.0.3)
Requirement already satisfied: numpy in 
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3) 
(1.23.5)
Requirement already satisfied: packaging in 
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3) 
(23.2)
Requirement already satisfied: configurable-objects in 
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3) 
(0.0.1)
Requirement already satisfied: simple-data-flow in 
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3) 
(0.0.1)
Requirement already satisfied: sklearn-weka-plugin in 
/usr/local/lib/python3.10/dist-packages (0.0.7)
Requirement already satisfied: numpy in 
/usr/local/lib/python3.10/dist-packages (from sklearn-weka-plugin) 
(1.23.5)
Requirement already satisfied: python-weka-wrapper3>=0.2.5 in 
/usr/local/lib/python3.10/dist-packages (from sklearn-weka-plugin) 
(0.2.14)
Requirement already satisfied: sklearn in 
/usr/local/lib/python3.10/dist-packages (from sklearn-weka-plugin) 
(0.0.post10)
Requirement already satisfied: python-javabridge>=4.0.0 in 
/usr/local/lib/python3.10/dist-packages (from python-weka-
wrapper3>=0.2.5->sklearn-weka-plugin) (4.0.3)
Requirement already satisfied: packaging in 
/usr/local/lib/python3.10/dist-packages (from python-weka-
wrapper3>=0.2.5->sklearn-weka-plugin) (23.2)
Requirement already satisfied: configurable-objects in 
/usr/local/lib/python3.10/dist-packages (from python-weka-
wrapper3>=0.2.5->sklearn-weka-plugin) (0.0.1)



Requirement already satisfied: simple-data-flow in 
/usr/local/lib/python3.10/dist-packages (from python-weka-
wrapper3>=0.2.5->sklearn-weka-plugin) (0.0.1)

# @title
#Restart runtime after installing the dependencies

# @title
import os
import glob
import numpy as np
import pandas as pd
import weka.core.jvm as jvm
from weka.core import converters
import matplotlib.pyplot as plt

# @title
data_dir = 'data'

# @title
#!rm -r weka
#!rm -r data

# @title
#jvm.stop()
jvm.start(packages=True)

DEBUG:weka.core.jvm:Adding bundled jars
DEBUG:weka.core.jvm:Classpath=['/usr/local/lib/python3.10/dist-
packages/javabridge/jars/rhino-1.7R4.jar', 
'/usr/local/lib/python3.10/dist-packages/javabridge/jars/runnablequeue
.jar', 
'/usr/local/lib/python3.10/dist-packages/javabridge/jars/cpython.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/arpack_combined.jar'
, '/usr/local/lib/python3.10/dist-packages/weka/lib/mtj.jar', 
'/usr/local/lib/python3.10/dist-packages/weka/lib/core.jar', 
'/usr/local/lib/python3.10/dist-packages/weka/lib/weka.jar', 
'/usr/local/lib/python3.10/dist-packages/weka/lib/python-weka-
wrapper.jar']
DEBUG:weka.core.jvm:MaxHeapSize=default
DEBUG:weka.core.jvm:Package support enabled

# @title
# Preparing Datasets
if not os.path.exists(data_dir):
    !mkdir $data_dir
    for file in ['airline.arff', 'breast-cancer.arff', 'contact-
lenses.arff', 'cpu.arff', 'cpu.with.vendor.arff', 'credit-g.arff', 
'diabetes.arff', 'glass.arff', 'hypothyroid.arff', 'ionosphere.arff', 
'iris.2D.arff', 'iris.arff', 'labor.arff', 'segment-challenge.arff', 
'segment-test.arff', 'soybean.arff', 'supermarket.arff', 



'unbalanced.arff', 'vote.arff', 'weather.nominal.arff', 
'weather.numeric.arff',]:
        url = 
'https://git.cms.waikato.ac.nz/weka/weka/-/raw/main/trunk/wekadocs/
data/' + file
        !wget -P $data_dir $url
    loader = 
converters.Loader(classname="weka.core.converters.ArffLoader")
    saver = 
converters.Saver(classname="weka.core.converters.CSVSaver")
    for file in glob.glob(os.path.join(data_dir, '*.arff')):
        dataset = loader.load_file(file)
        filename, file_extension = os.path.splitext(file)
        saver.save_file(dataset, filename + '.csv')
    !wget -P $data_dir https://raw.githubusercontent.com/Rytuo/ITMO-
CT/master/Others/AdvancedML/data/OpenML/data/1438.arff
    !rm -r weka

import weka.core.packages as packages
packages.install_package("simpleEducationalLearningSchemes")
packages.install_package("generalizedSequentialPatterns")
packages.install_package("classAssociationRules")

from weka.core.converters import Loader
loader = Loader(classname="weka.core.converters.ArffLoader")

6.1 Decision Trees
Numeric Attributes
# Discretization: Converting numeric to categorical.

import pandas as pd

sr = pd.Series([10, 20, 15, 5, 30, 25, 7, 12, 17, 22])

binEdges = [0, 10, 20, 30]
binLabels = ['Low', 'Medium', 'High']

categorized_sr = pd.cut(sr, bins=binEdges, labels=binLabels)

categorized_sr

0       Low
1    Medium
2    Medium
3       Low
4      High



5      High
6       Low
7    Medium
8    Medium
9      High
dtype: category
Categories (3, object): ['Low' < 'Medium' < 'High']

Task 1.1 Experiment with some dataset, and intuitively decide the number of labels.

Task 1.2 Think of a general heuristic/strategy to optimize the number of labels.

Missing Values
# Use these probabilities to classify the row with missing value
# Assume the row has some label, then multiply the classification 
result by the corresponding probability
# Aggregate all classification answers

import pandas as pd
import random

# Create a sample DataFrame with missing values
df = pd.DataFrame({
    "F1": [random.choice([1, 2, 3, None]) for _ in range(30)],
    "F2": [random.choice(['A', 'B', 'C', None]) for _ in range(30)]
  }
)

# Function to compute sums and probabilities
def probabilitiesOfMissing(df, featureStr):
    # Drop rows with missing values in the feature
    df_no_missing = df.dropna(subset=[featureStr])

    # Calculate the sum of distinct values for the feature
    sums = df_no_missing[featureStr].value_counts()

    # Calculate the total sum
    total_sum = sums.sum()

    # Calculate the probability for each distinct value
    probabilities = sums / total_sum

    return sums, probabilities

# Compute sums and probabilities for Feature 2
sums2, probabilities2 = probabilitiesOfMissing(df, "F2")

print("Probabilities for F2:")
print(probabilities2)



Probabilities for F2:
A    0.476190
C    0.380952
B    0.142857
Name: F2, dtype: float64

Task 1.3 Contrast this heuristic with dropping null values and with substituting missings by the 
average. Try to quantify your conclusions on some dataset.

Pruning
# cost complexity pruning
# reference: 
https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexit
y_pruning.html

from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

# Load the Iris dataset and split it into training and testing sets
iris = load_iris(); X = iris.data; y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.3, random_state=42)

# Train a decision tree classifier
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train, y_train)

# Prune the existing decision tree using the prune_path method
path = clf.cost_complexity_pruning_path(X_train, y_train)
ccp_alphas, impurities = path.ccp_alphas, path.impurities

# Choose the alpha value for pruning
alpha_toPrune = 0.03  # You can adjust this value based on your data

# Prune the tree using the chosen alpha value
prunedTree = DecisionTreeClassifier(ccp_alpha=alpha_toPrune, 
random_state=42)
prunedTree.fit(X_train, y_train)

Original Decision Tree Accuracy: 1.00
Pruned Decision Tree Accuracy: 0.98

# Original Tree

import matplotlib.pyplot as plt
from sklearn.tree import plot_tree

plt.figure(figsize=(15, 10))



plot_tree(clf, filled=True, feature_names=iris.feature_names, 
class_names=iris.target_names)
plt.show()

# Pruned Tree

import matplotlib.pyplot as plt
from sklearn.tree import plot_tree

# Plot the decision tree
plot_tree(prunedTree, filled=True, feature_names=iris.feature_names, 
class_names=iris.target_names)
plt.show()



Task 1.4 Construct couple of decision trees, and compare accuracies vs depth or nodes number. 
Through a visualization of these two measures, Guess the optimal tree.

6.2 Classification Rules
Criteria for Choosing Tests
Task 2.1 Refer back to Lab 04, Pick-up a rule-based algorithm, and assess error rate of a rule of 
your choice. Alternatively, You can use the code snippet of Generating Good Rules section.

Missing Values, Numeric Attributes
Task 2.2 Refer back to Lab 04, Pick-up a rule-based algorithm, and some instance of your choice.
Remove a feature from the instance, then re-classify it. You can use the code snippet of 
Generating Good Rules to aid you in analysis.

Generating Good Rules
# Create a dummy DataFrame with random data

import pandas as pd
import random

df = pd.DataFrame({
    "F1": [random.choice(['A', 'B', 'C']) for _ in range(10)],



    "F2": [random.choice(['X', 'Y', 'Z']) for _ in range(10)],
    "class": [random.choice([0, 1]) for _ in range(10)]
})

Coverage of the rule for F1 = A: 5 rows
Accuracy of the rule: 40.00%

# Coverate and Accuracy of a hand-crafted rule

import numpy as np

# Define a rule. If F1 = A, return 0
def myRule1(row):
  if row["F1"] == "A":
    return 0
  return np.NaN

# instances the rule is applicable on
# apply predicted class by our rule
instancesCovered = df.apply(myRule1, 
axis=1).dropna().to_frame(name="predictedClass")

# join data's class (ground truth)
instancesCovered = instancesCovered.join(df["class"])

# Coverage: Number of instances the rule is applicable on
ruleCoverage = len( instancesCovered )

# Number of correctly classified instances
count_CorrectlyClassified = (instancesCovered["predictedClass"] == 
instancesCovered["class"]).value_counts()[True]

# Accuracy: Number of correctly classified instances, out of covered 
instances
ruleAccuracy = count_CorrectlyClassified / ruleCoverage

print(f"Coverage: {ruleCoverage}")
print(f"Accuracy: {ruleAccuracy:.2%}")

Coverage: 5
Accuracy: 60.00%

Task 2.3 Modify myRule1 function to increase coverage and accuracy.

Task 2.4 Partition the dataset into training and testing. Apply task 2.4 on training data without 
seeing testing. Compute accuracy and measures on testing. Note since data were randomly 
generated, You shouldn't expect rules well-generalizing



Using Global Optimization
# train model
# from weka.classifiers import Classifier
# cls = Classifier(classname="weka.classifiers.rules.JRip")
# cls.build_classifier(instances)

Task 2.5 Refer back to Lab 04, Use the above code snipper on the same template of the lab.

Rules with Exceptions
Task 2.6 Refer back to Lab 04, on XOR classifier. Modify the code so that it has a default output 
with exceptions. Outputs must be equivalent to the original code.

6.3 Association Rules
Sources

• FP-Growth by Weka
• Generalized Sequential Petterns by Weka
• CBA by weka

Generalized Sequential Petterns
# weather nominal dataset
instances = loader.load_file("data/weather.nominal.arff")
instances

@relation weather.symbolic

@attribute outlook {sunny,overcast,rainy}
@attribute temperature {hot,mild,cool}
@attribute humidity {high,normal}
@attribute windy {TRUE,FALSE}
@attribute play {yes,no}

@data
sunny,hot,high,FALSE,no
sunny,hot,high,TRUE,no
overcast,hot,high,FALSE,yes
rainy,mild,high,FALSE,yes
rainy,cool,normal,FALSE,yes
rainy,cool,normal,TRUE,no
overcast,cool,normal,TRUE,yes
sunny,mild,high,FALSE,no
sunny,cool,normal,FALSE,yes
rainy,mild,normal,FALSE,yes
sunny,mild,normal,TRUE,yes

https://weka.sourceforge.io/doc.packages/classAssociationRules/weka/classifiers/rules/car/JCBA.html
https://weka.sourceforge.io/doc.packages/generalizedSequentialPatterns/weka/associations/GeneralizedSequentialPatterns.html
https://weka.sourceforge.io/doc.dev/weka/associations/FPGrowth.html


overcast,mild,high,TRUE,yes
overcast,hot,normal,FALSE,yes
rainy,mild,high,TRUE,no

# train model
from weka.associations import Associator
associator = 
Associator(classname="weka.associations.GeneralizedSequentialPatterns"
)
associator.build_associations(instances)

# model inspection
associator.description

<bound method OptionHandler.description of 
Apriori
=======

Minimum support: 0.15 (2 instances)
Minimum metric <confidence>: 0.9
Number of cycles performed: 17

Generated sets of large itemsets:

Size of set of large itemsets L(1): 12

Size of set of large itemsets L(2): 47

Size of set of large itemsets L(3): 39

Size of set of large itemsets L(4): 6

Best rules found:

 1. outlook=overcast 4 ==> play=yes 4    <conf:(1)> lift:(1.56) lev:
(0.1) [1] conv:(1.43)
 2. temperature=cool 4 ==> humidity=normal 4    <conf:(1)> lift:(2) 
lev:(0.14) [2] conv:(2)
 3. humidity=normal windy=FALSE 4 ==> play=yes 4    <conf:(1)> lift:
(1.56) lev:(0.1) [1] conv:(1.43)
 4. outlook=sunny play=no 3 ==> humidity=high 3    <conf:(1)> lift:(2)
lev:(0.11) [1] conv:(1.5)
 5. outlook=sunny humidity=high 3 ==> play=no 3    <conf:(1)> lift:
(2.8) lev:(0.14) [1] conv:(1.93)
 6. outlook=rainy play=yes 3 ==> windy=FALSE 3    <conf:(1)> lift:
(1.75) lev:(0.09) [1] conv:(1.29)
 7. outlook=rainy windy=FALSE 3 ==> play=yes 3    <conf:(1)> lift:
(1.56) lev:(0.08) [1] conv:(1.07)
 8. temperature=cool play=yes 3 ==> humidity=normal 3    <conf:(1)> 
lift:(2) lev:(0.11) [1] conv:(1.5)
 9. outlook=sunny temperature=hot 2 ==> humidity=high 2    <conf:(1)> 



lift:(2) lev:(0.07) [1] conv:(1)
10. temperature=hot play=no 2 ==> outlook=sunny 2    <conf:(1)> lift:
(2.8) lev:(0.09) [1] conv:(1.29)
>
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