Chapter Goals

- Extending algorithms to overcome some shortcomings of naive methods.

General Lab Guidlines

- Visualization.
- Modifiable code snippets.

```
# Loading a dataset
# dataset names: "airline", "breast-cancer", "contact-lenses", "cpu",
"cpu.with.vendor", "credit-g", "diabetes", "glass", "hypothyroid",
"ionosphere", "iris.2D", "iris", "labor", "segment-challenge",
"segment-test", "soybean", "supermarket", "unbalanced", "vote",
"weather.nominal", "weather.numeric"
# df = pd.read csv("data/weather.numeric.csv")
# instances = \overline{loader.load file("data/weather.numeric.arff")}
```


Modules \& Datasets Setup

```
# @title
!apt-get install default-jdk
!apt install libgraphviz-dev
```

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
default-jdk is already the newest version (2:1.11-72build2).
0 upgraded, 0 newly installed, 0 to remove and 15 not upgraded.
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
libgraphviz-dev is already the newest version (2.42.2-6).
0 upgraded, 0 newly installed, 0 to remove and 15 not upgraded.
\# @title
!pip install pygraphviz
!pip install python-javabridge
!pip install python-weka-wrapper3
!pip install sklearn-weka-plugin

Requirement already satisfied: pygraphviz in /usr/local/lib/python3.10/dist-packages (1.11)
Requirement already satisfied: python-javabridge in
/usr/local/lib/python3.10/dist-packages (4.0.3)
Requirement already satisfied: numpy>=1.20.1 in
/usr/local/lib/python3.10/dist-packages (from python-javabridge)
(1.23.5)

Requirement already satisfied: python-weka-wrapper3 in
/usr/local/lib/python3.10/dist-packages (0.2.14)
Requirement already satisfied: python-javabridge>=4.0.0 in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(4.0.3)

Requirement already satisfied: numpy in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(1.23.5)

Requirement already satisfied: packaging in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(23.2)

Requirement already satisfied: configurable-objects in /usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3) (0.0.1)

Requirement already satisfied: simple-data-flow in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(0.0.1)

Collecting sklearn-weka-plugin
Using cached sklearn-weka-plugin-0.0.7.tar.gz (69 kB)
Preparing metadata (setup.py) ... ent already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from sklearn-weka-plugin) (1.23.5)

Requirement already satisfied: python-weka-wrapper3>=0.2.5 in
/usr/local/lib/python3.10/dist-packages (from sklearn-weka-plugin) (0.2.14)

Collecting sklearn (from sklearn-weka-plugin)
Using cached sklearn-0.0.post12.tar.gz (2.6 kB)
error: subprocess-exited-with-error
\times python setup.py egg_info did not run successfully. exit code: 1
\rightarrow See above for output.
note: This error originates from a subprocess, and is likely not a problem with pip.

Preparing metadata (setup.py) ... error: metadata-generation-failed
\times Encountered error while generating package metadata.
\longrightarrow See above for output.
note: This is an issue with the package mentioned above, not pip.
hint: See above for details.
\# @title
\#Restart runtime after installing the dependencies

```
# @title
import os
import glob
import numpy as np
import pandas as pd
import weka.core.jvm as jvm
from weka.core import converters
import matplotlib.pyplot as plt
# @title
data_dir = 'data'
# @title
#!rm -r weka
#!rm -r data
# @title
#jvm.stop()
jvm.start(packages=True)
DEBUG:weka.core.jvm:Adding bundled jars
DEBUG:weka.core.jvm:Classpath=['/usr/local/lib/python3.10/dist-
packages/javabridge/jars/rhino-1.7R4.jar',
'/usr/local/lib/python3.10/dist-packages/javabridge/jars/runnablequeue
.jar',
'/usr/local/lib/python3.10/dist-packages/javabridge/jars/cpython.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/core.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/python-weka-
wrapper.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/mtj.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/weka.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/arpack_combined.jar'
]
DEBUG:weka.core.jvm:MaxHeapSize=default
DEBUG:weka.core.jvm:Package support enabled
# @title
# Preparing Datasets
if not os.path.exists(data dir):
    !mkdir $data dir
    for file in ['airline.arff', 'breast-cancer.arff', 'contact-
lenses.arff', 'cpu.arff', 'cpu.with.vendor.arff', 'credit-g.arff',
'diabetes.arff', 'glass.arff', 'hypothyroid.arff', 'ionosphere.arff',
'iris.2D.arff', 'iris.arff', 'labor.arff', 'segment-challenge.arff',
'segment-test.arff', 'soybean.arff', 'supermarket.arff',
'unbalanced.arff', 'vote.arff', 'weather.nominal.arff',
'weather.numeric.arff',]:
                url =
'https://git.cms.waikato.ac.nz/weka/weka/-/raw/main/trunk/wekadocs/
data/' + file
```

```
        !wget -P $data_dir $url
    loader =
converters.Loader(classname="weka.core.converters.ArffLoader")
    saver =
converters.Saver(classname="weka.core.converters.CSVSaver")
    for file in glob.glob(os.path.join(data_dir, '*.arff')):
        dataset = loader.load_file(file)
        filename, file_extension = os.path.splitext(file)
        saver.save_file(dataset, filename + '.csv')
    !wget -P $data_dir https://raw.githubusercontent.com/Rytuo/ITMO-
CT/master/Others/AdvancedML/data/OpenML/data/1438.arff
    !rm -r weka
# @title
import weka.core.packages as packages
packages.install_package("simpleEducationalLearningSchemes")
packages.install_package("generalizedSequentialPatterns")
packages.install_package("classAssociationRules")
packages.install_package("NNge")
packages.install_package("LibSVM")
from weka.core.converters import Loader
loader = Loader(classname="weka.core.converters.ArffLoader")
```


7.1 Instance-based Learning

Sources

- NNge, Weka's sourceforge - Build the Nearest-neighbor-like algorithm using nonnested eneralized exemplars. Hyperrectangles that can be viewed as if-then rules.
- SVC, Scikit-learn - C-Support Vector Classification.

Weighted Attributes

\# Weighted Euclidean Distance Function
import numpy as np
def weighted_euclidean_distance(x, y, weights):
\# Calculate the squared differences, multiply by weights, and sum them up
squared_diff $=n p . \operatorname{sum}($ weights $*(x-y) * * 2)$
\# Take the square root to get the final distance
distance = np.sqrt(squared_diff)
return distance
\# Distance computed
$\mathrm{x} 1=\mathrm{np} . \operatorname{array}([1,2,3])$
yl = np.array([4, 5, 6])
weights1 = np.array([0.5, 1.0, 2.0])
weighted_euclidean_distance(x1, y1, weights1)
5.612486080160912
\# Same instances but with different weights
weights2 = np.array([1.0, 2.0, 3.0])
weighted_euclidean_distance(x1, y1, weights2)
7.3484692283495345

Task 7.1.1 Select weights that yields a distance less than 5.

Reducing the number of exemplars

```
# Dummy SVC classifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
# Generate dummy data
X, y = make_classification(n_samples=1000, n_features=10,
n_informative=5, n_clusters_\overline{per_class=2, random_state=42)}
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)
# Train a Support Vector Machine classifier
classifier = SVC(kernel='linear', random_state=42)
classifier.fit(X_train, y_train)
# Make predictions on the test set
y_pred = classifier.predict(X_test)
# Only add misclassified instances to a new list
# Loop through the data and add correctly classified rows to a list
misclassified_data = []
for i in range(len(X_test)):
    if y_test[i] != y_pred[i]:
```

```
misclassified_data.append((X_test[i], y_test[i]))
```

misclassified_data
[(array([0.16451511, -0.38383538, 0.57212572, -0.50499976, 0.36080209 ,
-0.92793647, -0.66985931, 2.04225784, 0.27598449, 1.42747822]),
0),
(array([1.92418868, 2.8212828 , 0.80425627, 1.24720468, 1.81907914, $1.63973165,4.55981909,0.64265673,-1.29470518,-$ 2.63876677]),
0),
(array([1.93893246, 1.85237273, -0.36356204, -1.78003996, 1.94211163,
$-0.72864596,0.49785062,-1.08487878,-1.69349909$, 1.97531423]),
1),
(array([0.81464654, 1.87091519, 0.22650535, -0.42633922, 0.14788824 ,
$0.48660587,0.46576246,0.46005434,-1.99508047,-$
1.03431896]),
0),
(array([-0.7441206 , -0.1660458 , 0.0552561 , -1.62385894, 1.00775365,
-1.30471297, -1.56555072, -0.48414713, 1.927813 ,
2.12633032]),
1),
(array([1.78796655, -0.48391738, -1.18384264, -0.4064744 , 0.73391788 , $-0.31168967,0.6396662,-0.93644605,-0.03255022$, 2.14965924]),
0),
(array([0.26359651, -1.51824297, -0.7790524, -2.08280932, 2.11393688, $-1.43050623,-0.83417809,0.06116257,0.22505789$, 4.72987665]),
1),
(array([-1.72163052, -2.22896228, -2.32563168, 0.50707536, 3.46962908,
$-1.87269534,1.674083,-0.46655497,-0.37979424$,
2.7896169]),
1),
(array([2.28959543, 0.63059454, -1.65669252, -0.1778701, 2.08149681, $0.85547492,3.01817218,-0.73480371,1.54934093$,
1.18950727]),
0),
(array([1.61609292, 1.37520667, -0.47327615, 0.33462936,
1.22108177,
$0.31978672,2.2010775,0.44373929,0.16937505,-$
$0.34334639]$),
0),
(array([1.45816903, -0.72942797, -0.46674581, -1.34112671, 0.46631153 , $-0.47712829,-0.63783025,0.45108821,-3.53885773$,
2.9722253]),
0),
(array([2.29349201, -0.23635538, 0.21522073, -0.70030565, 1.67376646,
$-0.1200001,1.52617108,-1.12623821,-0.41517528$,
2.71204268]),
0),
(array([1.83364858, 0.66049449, -0.97976195, -0.40254306, 1.7549046 $0.27983006,2.02965684,-0.05324257,0.68370954$,
1.2584984]),
0),
(array([2.56949215, -0.2661463, -0.37910175, 0.39572427, 1.96906148, $0.57758371,3.26211283,-0.38259338,-0.05605557$,
1.73047172]),
0),
(array([0.45821971, 0.51486386, -1.25031358, -0.69590294, 0.21587394 , $0.52745917,-0.2852771,-1.11150538,-0.09547264$,
0.0589117]),
0),
(array([-1.18660302, -1.41459786, -0.12151968, -1.44070926, 1.6302829 $-2.0346319,-1.53745631,-1.42146469,-0.02833985$,
3.41393228]),
1),
(array([-0.71916725, -0.10340752, 0.19490721, 1.10217561, 0.7465228
$2.47356649,1.5924911,1.52742939,-0.93088524,-$
2.66314644]),
1),
(array([1.09335798, -0.11538401, -0.33199446, -1.49487061, 2.47700014,
$-1.54246525,0.30140564,1.3213162,-0.20758435$, 3.60644144]),
1),
(array([0.11590163, -2.26719728, -0.61811143, 0.25967005, 5.94327219,
$-1.73683959,4.34180376,0.27059772,-1.92068887$,
4.87259496]),
1),
(array([2.04693737, -1.45778913, 0.85699624, -1.60834187, 1.11439173, $-2.2270836,-1.24772904,-0.41438979,0.18379937$, 5.21611015]),
0),
(array([4.10744399, -3.34464986, 1.99386294, -0.51492095, 2.03395845,
-3.38926254,
0.30991538 ,
0.17380116, -0.08485904, 7.93394423]),
0),
(array([1.07158215, -0.48764846, 0.90266029, -1.36831707, 0.56003549 , $2.20873514,-0.01324189,0.73572131,0.03400925$, 0.94665816]),
1),
(array([1.79991328, 1.25799664, -0.77653634, 0.38453469, 0.87273974 ,
$0.96898233,2.38527056,0.97010109,-0.23002531,-$
$0.61486815])$,
0),
(array([1.63836865, -0.1736689, -0.05936745, -0.35071715, 0.92718479 ,
$0.59394113,1.40208218,-0.35127204,-1.61994213$, 1.39798358]),
0),
(array([1.84429541, 0.4839725 , 1.19853263, -0.66079564, 1.45940657,

$$
-0.38086723,1.11857868,0.19163196,1.05802239,
$$

1.83948269]),
0),
(array([1.49321377, 0.29564747, 0.80558047, -1.86585132, 2.88328509, $-0.33675584,1.25277061,-0.94412756,-1.7602625$,
3.3644354]),
1),
(array([1.4667239 , 1.68348286, -1.02492807, 0.54481642, 0.12640208 , $-0.11890253,1.10401448,0.07541774,0.80559383,-$ 1.08149926]),
0),
(array([1.62830732, -1.00972351, -1.44355703, -1.18774466, 0.67179917 ,
$-1.76858268,-1.09235447,0.31978999,1.16034818$, 3.85597173]),
0),
(array([0.52435075, -0.40104859, -0.54922814, -1.86644796, 0.96932425 , -0.74784088, -1.08094133, 0.96231658, 0.60682987, 2.94675247]),
1),
(array([2.75899229, 0.19497709, -0.62905673, -0.1450738
2.35408563,
$0.07789083,2.9220002,-0.25056037,0.45650234$,
2.26095186]),
0),
(array([1.08080611, 2.0699942, -0.59376156, 0.76244403, 0.58632364 ,
0.91779726,
2.25909684, -0.00480519,
0.4432381 , -
2.12747213]),
0)]

Task 7.1.2 Train a model only on the subset of misclassified data. Compare evaluation metrics of it with the original dataset.

Pruning Noisy Exemplars

```
# Dummy SVC classifier
from sklearn.datasets import make_classification
from sklearn.model_selection impor}t train_test_spli
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
# Generate dummy data
X, y = make_classification(n_samples=1000, n_features=10,
n_informative=5, n_clusters_per_class=2, random_state=42)
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)
# Train a Support Vector Machine classifier
classifier = SVC(kernel='linear', random_state=42)
classifier.fit(X_train, y_train)
# Make predictions on the test set
y_pred = classifier.predict(X_test)
# Only add correctly classified instances
# Loop through the data and add correctly classified rows to a list
correctly_classified_data = []
for i in range(len(X_test)):
    if y_test[i] == y_pred[i]:
        correctly_classified_data.append((X_test[i], y_test[i]))
# Print the correctly classified data
print("\nCorrectly classified data:")
```

for data_point in correctly_classified_data:
print(f"Features: \{data_point[0]\}, ${ }^{-}$True Label: \{data_point[1]\}")

Correctly classified data:
Features: [0.5378166 3.04473816 -0.86943275 -0.39387338 1.38778695 2.54467197
2.89093355 0.39856407 1.66701271-2.74680967], True Label: 0

Features: [$1.17973229-1.02175785-0.01786658$-1.3618804 -1. 22224382 0.29348953
-1.80166455 1.19827604-1.31477345 2.11574554], True Label: 1 Features: [0.12080215 0.05518365 0.09293023 -2.94773011 0.11233761 0.35861598
-2.19223012-0.4286748 0.33736307 2.42252899], True Label: 0 Features: $\left[\begin{array}{llllll}-2.29406671 & -2.15676964 & 0.75880093 & 0.39214952 & 3.64558143\end{array}\right.$ 0.5103278
3.04138398 1.5749487 0.49462464 1.47917748], True Label: 0 Features: [1.08886291 1.83506393 -0.4700715 -0.5677211 1.10867507 0.25247179
1.14345960 .35140667 1.11162215-0.26872452], True Label: 0 Features: [0.63701621 1.09821927 -0.38187934 -0.96997451 0.79037445 0.80506646
0.65388853 1.21696886-0.83953924 0.11651484], True Label: 0 Features: [-0.91213648-0.45535477 -0.36389379-1.38009834 0.21566169 1.31679045
-0.50703276 1.4704323 0.70227643 0.57380588], True Label: 0 Features: [-1.94924340e+00 1.07732491e+00 9.75712538e-01 $3.09376173 \mathrm{e}+00$
$-1.81909458 \mathrm{e}+00 \quad 3.33612730 \mathrm{e}+00 \quad 2.59735642 \mathrm{e}+00 \quad-5.27559711 \mathrm{e}-03$ $2.20418617 \mathrm{e}+00-6.87832544 \mathrm{e}+00$], True Label: 1
Features: [$1.49489139-0.71372017$ 0.51906954 -2.18501145-1.4755518 -0. 25477792
$-2.9620502 \quad 1.70896405 \quad 2.98632938 \quad 2.8767545$], True Label: 1 Features: [1.15430693 0.20025946-1.08724034 -0.57335665-0.60851458 0.52627644
-0.33615461 0.69063057-0.78630405 0.45865044], True Label: 1 Features: [1.43654173 -1.12403299 0.82223218 -0.69910484-1.55624553 0.44886016
-1.35601151 2.0905299 -1.58360793 1.57785518], True Label: 1 Features: [0.6813526 -0.68862502 0.86844431 0.46977513 2.16160626 -0.70001937
2.07468514-0.04809742-0.55826488 1.70110371], True Label: 1 Features: [0.20335952-1.09265198 -0.5147917 -0.21775138 3.22353919 -2.14568472
1.34868477 0.72127813 1.97310487 3.46217019], True Label: 1 Features: [-0.3145475 -1.43037498 -0.27464485 -0.03603285 2.31776601 -0.09393581
1.78216804-1.0337358 1.71416436 2.04160159], True Label: 0 Features: [0.32539025-1.14135884-0.12399297-0.04983084 2.69750774 -1.96355817
1.170583470 .56618694 1.30606146 3.14599426], True Label: 1 Features: $\left[\begin{array}{lllll}-0.36489025 & 0.34345953 & 0.09427929 & 3.49079116 & -2.17741779\end{array}\right.$ 0.65808875
1.39668998 1.21236812 1.01344576-4.61373732], True Label: 1 Features: $[3.32238325$ 1.36853063-1.68188036 -0.68441992 -0.36477115 3.20448419
2.22852187 0.61706304-1.17954106-0.48165678], True Label: 1 Features: [0.39375409 0.56166153 -0.00350573 0.04192278 1.15945123 2.04773847
2.51990376-0.27935328-0.49895112 -0.8441584], True Label: 0 Features: [-2.07940923 -2.47240687-0.08504434-0.37109836 3.02113153 0.20479445
1.67175908 1.07057947-1.50608885 2.43909901], True Label: 0 Features: [-2.2441462 -2.01973329 0.18441657-2.0306235 0.70819784 1.01297374
-1. $35895056-1.87397008-1.58868813$ 2.13840349], True Label: 0 Features: [0.77625832 -0.07659466 0.49316983 -1.75947191 0.4390264 4.41456454
$1.856077161 .149715330 .073198630 .10829567]$, True Label: 0 Features: [-3.54705398-2.70475245 1.69232972-0.90695818 1.48088926 -2. 34454585
-2.24530336 1.18764114-1.82039805 2.93355357], True Label: 0 Features: [-1.38078736 1.07350441 0.05138541-3.52677242 0.09673478 3.06989942
$-1.41664999 \quad 0.6787426-1.27451911-0.04919161]$, True Label: 0 Features: [0.4542765 0.35778551-1.00812996-1.22125284-1.83067192 -0.09071983
-2.58903249-0.21960209-0.19692572 0.33349827], True Label: 1 Features: [1.16647919 0.27512923 -1.02213624 0.76473747 2.96549324 -0.22704147
3.57364857-0.91962694 0.59452613 0.92891644], True Label: 1 Features: [0.04802164 1.81424804 0.97384626 -1.46314915 0.06824888 1.44360854 -0.15608937-0.34670953-1.50046771-0.97539239], True Label: 0 Features: [-1.29318295 -0.54353375 0.43782377 -0.35965719 1.05516505 0.32949009
0.39018342 2.08541062 0.87044917 0.343243], True Label: 0 Features: [-1.91683825-2.28200726 0.23065793-1.89052157 1.06852623 0.90095125
-0.90029108-0.40942257-3.3475506 2.61173855], True Label: 0 Features: [0.3762293 3.33088189 1.77070565 -1.04119717 1.8455182 3.9696101
3.598274830 .672625760 .66603457 -3.02204067], True Label: 0 Features: [-1.90562858 0.83114909-0.09662954 5.44201867-2.49917032 1. 60390355
2.94132691-0.71522095 0.654128 -8.10261379], True Label: 1 Features: [-3.80487368-2.75566887 0.48571584-2.12421181 0.20289324 -1.9777969
-4.305932321 .72928968 0.98404145 3.2412059], True Label: 0

Features: [0.81205059 1.09487674 0.30556438 -0.98027534 0.99893216 2.76048171
$2.10527316-1.57391421-0.85773888-0.60793071]$, True Label: 0 Features: [0.75060889 -0.08928507 0.76343818 -0.86307722 -1. 40672517 0.27313396
-1.61140396-0.79286361 1.27366505 0.57028105], True Label: 1 Features: [1.45064037 0.62003829 0.16781324 -0.24751029 1.28103008 1.40222576
2.31399412-0.79632665-0.2693521 0.26023484], True Label: 0 Features: [2.80076038e+00 9.77355618e-01 -1.03247897e+00 -2.51660197e-03
$-4.67626533 \mathrm{e}-01 \quad 1.34484793 \mathrm{e}+00 \quad 1.37510666 \mathrm{e}+00 \quad 1.48229949 \mathrm{e}+00$ 8.29205593e-02 -1.72934269e-01], True Label: 1

Features: [1.66863856 -1.46581189 -0.37274224 -0.43079668 -0.5845751 0.28181073
-0.30774839-0.12369319-2.27756261 2.21411488], True Label: 1 Features: [0.834784 0.66233575 -0.31949007 -2.061473 1.45131968 0.94428267
$0.415612090 .581873961 .33338731 .72838575]$, True Label: 0
Features: [-3.58003347-2.08567031 1.34202275-0.72386337 1.20716203 -2.37218814
-2.312494740 .875290050 .61178705 2.11913459], True Label: 0 Features: [-0.07842477 0.24384745-0.48735737-0.16447136 0.72729613 0.36377733
$0.73046074-0.49529607$ 0.204516 -0.015433], True Label: 0 Features: [-0.18301789-1.18502391 0.4109902 -2.57055204-0.733092 1.27419634
-2.24384464-0.69417674-0.71524852 2.30022049], True Label: 0 Features: [2.11837791 1.09652113 0.50279729 -1.65612921 -3.88928419 0.2596429
-4.01404097-0.52277495 0.3195541 0.00782723], True Label: 1 Features: [-0.53544362 -0.72868274 0.87913832 -1.32979433 1.14223615 3.29881769
$1.70113615-1.25801991-0.22380305$ 0.39971125], True Label: 0 Features: [-1.23652769 -0.9762974 -0.78467539 -0.92035047 1.27227414 1.33879353
0.71196756 -0.04550186-1.98399668 0.85243361], True Label: 0 Features: [0.11589907 1.06995768 0.87818241 -2.68448393 1.67460575 3.53407179
1.49245932-0.67441431 0.58679738 0.39973313], True Label: 0 Features: [0.81639853 1.93226333 0.02251297 -1.2732468 1.51395885 - 1.45760694 -0.24913156-1.51200631 0.82694346 1.04982602], True Label: 1 Features: [-1.03238746-0.70870224 -0.97777821 -0.93261669 1.26835532 2.41643034
$1.4539864-1.25160359-0.79406226$ 0.23236768], True Label: 0 Features: [-1.11289025-0.85208994 -0.50146942-0.49307223 1.44667336 0.79722311
0.95057608 -0.23893182 -1.65191818 0.75699699], True Label: 0

Features: $\left[\begin{array}{llllll}4.06252507 & 1.04172547 & 1.73443309 & -1.27997302 & -0.58637119\end{array}\right.$ -0.92356784
-0.84996232 0.11758168 0.25695744 2.54731149], True Label: 1 Features: $[-2.44129013-1.62630018 \quad 0.9952904-1.80239868 \quad 0.1745079$ -0. 20388725
$-2.4301694-0.06122938-0.4996354 \quad 1.8533685$], True Label: 0 Features: [1.23989130 .48739688 0.37709022 $-1.15184742 \quad 1.53979869$ 0.83671085
1.3322699 -1.07821817-1.03014227 1.40131337], True Label: 0 Features: [2.29497434 2.31154157 0.17557206 2.06861052 -0.87149657 0.20834922
2.044457610 .798348050 .65930812 -3.03080911], True Label: 1 Features: [1.57719066 0.47484184 0.31364037 -1.07149875 1.58153612 0.05337685
1.05711244 0.29100686-1.76444817 1.90207406], True Label: 0 Features: [-0.77992613 3.2654361 -1.61116946 -2.21782522 0.74166828 2.96985502
$0.593091010 .360986080 .96810266-2.5161637$], True Label: 0 Features: [8.94553316e-01 2.93207016e+00-1.45668144e+00 1.88505488e-03
$1.56038698 \mathrm{e}+00 \quad 2.42542211 \mathrm{e}+00 \quad 3.41921899 \mathrm{e}+00-2.40623815 \mathrm{e}+00$ -1.70746639e-01-2.67693918e+00], True Label: 0
Features: [$0.80670044-1.02289714$-0.88449282 -2.3919792 0.67730351 1.05144758
$-0.63663202-0.33984504 \quad 0.50179117$ 3.1581523], True Label: 0 Features: [-0.85266137-0.45237214 0.82610984-0.76533497-1.21931233 - 1.54628137
-3.025866130 .68103961 .88400114 0.86893902], True Label: 1 Features: [-0.53421293-0.30355689-1.2098122 -0.51336393 0.73570785 0.29718794
0.20794992 .10516138 0.10025649 0.56224909], True Label: 0

Features: [1.67075984 2.32327493 0.72334822 0.10001742 -0.67108375 0.65912779
0.59998532 0.68706707 0.91803147-1.81746827], True Label: 1 Features: [0.77310787 -0.49361804 0.86515655 1.48678082 -2.25770215 1.42740516
0.35991969 1.29054823-1.43294908 -1.92865256], True Label: 1

Features: [-0.85571978 0.08418413 -0.34929547 2.91024498-1.62627531 2.08924529
$2.10412499-0.7228852-0.90596514-4.6048 \quad$], True Label: 1 Features: [$\begin{array}{llllll}1.02226332 & 1.72160673 & 1.31861793 & 0.22374122 & 0.69973595\end{array}$ 1.43732741
2.17184048 0.07486131 0.54287335-1.58495501], True Label: 0 Features: [-0.94321515-1.35991874 1.73969741 -2.04617039 0.26283329 1.49288874
-1.01197321 2.50749524 0.09885945 1.86961381], True Label: 0 Features: [0.71346471 -1.19169856 0.42489815 -0.15148117 1.06811224 -0.68354037
0.53594838 1.43929348-0.12443078 2.28455647], True Label: 1

Features: [-0.68495044 2.21525339-1.47646364-2.54949871 0.31776201 2.5236621
-0.40332671 1.09210296-1.12465504-1.19756773], True Label: 0 Features: [6.45310920e-01 2.64176732e+00-7.84829903e-01 2.67016018e-03
$4.53411686 \mathrm{e}-01 \quad 2.17494725 \mathrm{e}+00 \quad 2.16940284 \mathrm{e}+00-6.16633560 \mathrm{e}-01$
-5.74796418e-01 -2.84802488e+00], True Label: 0
Features: [3.05456472 -0.29959379 1.49846732 -1.55503373 0.00861475 -0. 26485469
-0.56503106-0.78570022 1.5227113 3.35528944], True Label: 1 Features: [0.52048889-1.06965207-1.75784345 0.11949596 2.12004853 -0.63302134
1.69518639 0.0873287-1.1828155 2.20855799], True Label: 1 Features: [1.02233882 -0.33683675 0.97637367 -0.89314587 1.65891319 - 1.98954442
-0.22837569-0.9858105 1.04848487 3.15164667], True Label: 1
Features: $\left[\begin{array}{lllll}1.33278581 & 0.36421737 & 0.29674848 & -1.24710291 & -0.99557867\end{array}\right.$ -0.18903389
-1.64513988 0.34251897-0.91150997 1.17438071], True Label: 1 Features: [0.90331059 3.89581876 -0.90680773 0.45686685 1.70031346 3.28941234
4.55422017 0.62761121-0.89037706-4.26883245], True Label: 0 Features: [0.54532939-1.40031511 -0.52806111 -0.73791467 2.64393899 - 1.39573563
$0.92864915-0.560794470 .41818896$ 3.80108284], True Label: 1 Features: [0.73516033 0.42927444 -0.92699439 -2.17551298 0.8248236 0.374716
-0.64975451-0.74984821 0.21757954 2.01157617], True Label: 0 Features: [2.05310355 0.26307407 0.993334500 .9492099 -0.84276322 1.85874557
1.89403279-2.07117988-0.34306254-1.13147344], True Label: 1 Features: [-0.64408565-0.71234309 -0.23476535-2.74289997-1.44858398 0.92917152
-3.36020607 0.65383322 0.85268038 1.67605786], True Label: 0 Features: [-1.29178867-1.25860758-0.15582106-1.72066616 0.04831083 -0.07477623
-2.00090397-0.22973533-1.38862201 1.96166538], True Label: 0 Features: [1.81967774 -3.5928405 -0.49052365 -1.8278222 2.31984901 - 1.09642
0.1134976 2.71361978 -0.60398586 7.10634793], True Label: 1 Features: [1.06317997 -0.13460626-1.9792983 -0.04090866-1.43349191 2.80292883
0.74944292 1.18259436-1.80817792 -1.11261693], True Label: 1 Features: [$1.70796399-0.02643242$-0.65031568 -0.74661461 1.80989973 0.84450218
$2.04001845-0.93711705-0.325162731 .85645315]$, True Label: 0 Features: [-0.67887643-0.91417873 0.59203683-2.37951782-0.58835496 1.46692905
-1.9640336 1.03410999 0.9834819 1.59559759], True Label: 0

Features: [1.337412860 .95549677 0.57238523 -0.05847636-0.37031816 0.65865711
$0.52248412-1.64897584$ 0.227767 -0.53041652], True Label: 1 Features: [1.91294674 1.34852909 -0.09441826 -0.42380508 -0. 28471277 -0.56920989
-0.27090841-0.76574532-0.65721171 0.34191193], True Label: 1 Features: [1.10063205 -0.20064401 -2.05287442 -2.30950509-0.17610043 -0.79079345
-2.32308569-1.51105403-0.87463981 3.04968399], True Label: 1 Features: [4.72404577 2.32730647-1.01437496 -2.33817826 0.40543768 - 1.17073197 -0.72530235 0.87845357 0.55133422 3.14915022], True Label: 1 Features: [3.20362416 -4.08024598 0.59522777 -0.70018454 1.22990584 -0. 33497784
$0.988403460 .567513460 .54002426 .54959715]$, True Label: 1 Features: [-2.11085288-1.19962274 -0.38851602 -1.95547391 0.25862226 1.38497733
$-1.360879130 .86387166-0.24307806$ 1.07565636], True Label: 0 Features: [1.51745182 -2.07804459 -1.58070005 -0.27053411 2.38609075 -0.16558708
2.124647230 .126475680 .63229921 3.85355397], True Label: 1 Features: [0.0920188 1.2273944 -2.88432437 3.18425824-0.99731005 0.75179032
$2.45994162-0.46306394 \quad 0.01682507-4.497379$], True Label: 1 Features: [-0.51620339 0.8787083 -0.32529892 -2.34249094 -0.56610894 0.8747846
-2.09270817 0.4861686 0.68687522 0.33905103], True Label: 0 Features: [-1.45485896-1.70196922 -0.09020718 -1.6583183 2.01476659 4.038748
2.29540012 0.86357136-0.23399757 1.03911266], True Label: 0 Features: [2.77181538 1.33017686 -0.52481283 -1.33552426-0.35891874 0.72486005
-0.05291203-0.668269 -0.92421896 0.97088475], True Label: 1 Features: [-0.79016492 0.29117297 3.24013915 3.68451996 -2.05138205 1.02745273
$1.7697446-0.21691499-1.34005689-5.0846202$], True Label: 1 Features: [0.8573977 0.58926008 -0.01241322 -1.5451482 1.07840852 0.91953206
$0.51525240 .64503786-0.334088161 .23463659]$, True Label: 0 Features: [$1.44421016-1.21725103$ 1.16040183 -1.54167085 -0.55592382 -0. 286101
$-1.652060050 .91425954-1.10325071$ 3.10177164], True Label: 1 Features: [2.00397663 -1.09727171 -2.26314679 -1.8634378 2.83021507 -0.89856663
0.91241214 -0.46738608 0.20838231 5.11401825], True Label: 1 Features: [-0.95417644-1.82361487 0.34669763-1.20000192 1.48333805 0.4667805
0.14004741 .08482774 0.65893535 2.47962423], True Label: 0 Features: [-1.42323297-2.65198393 -0.08507317 -1.97894101 1.82592469

2.45300605

0.79732794 0.23125775-0.1205082 2.84152314], True Label: 0 Features: [-0.80292371 0.75407922 -0.25215347-3.9224706 0.42107748 2.04659566
-1.9482734 0.39822095-0.26373504 1.47799248], True Label: 0 Features: [0.64149399 1.193086 0.16343176 -1.6493465 0.87193072 0.90320816
0.20713513 0.72551614-0.72732122 0.60287487], True Label: 0 Features: [-1.38265536 0.34288638-0.59342061 -1.17166356-1.04847779 -0. 52766287
-2.69751128 0.09674391 0.15434423-0.18056361], True Label: 0 Features: [-0.50125378 -0.5167838 -0.15742133 1.68698562 -1.25117645 2.13021339
1.47061383 1.12634753 1.64538183-2.71028893], True Label: 1 Features: [1.13629951 -2.52744096 0.35300618 -1.4885875 0.20697353 -0. 52253642
-1.26566165-0.49181949 0.97412337 4.45090036], True Label: 1 Features: [-3.37499713-2.41230395-1.62376835 -0.84613133 2. 27696445 0.10198432
$0.12271156-1.08697525-1.77024418$ 1.87422181], True Label: 0 Features: [-2.0541312 $-2.45577827-0.40208148$-0.86546766 2.64718096 1.06917982
$1.45466931-0.83051231 .45965483$ 2.32221989], True Label: 0 Features: [-0.3346055 1.68000983 0.15303392-1.54446603-1.91668586 -0.31126581
-3.2325911 -1.14259527-0.89554588-0.91466189], True Label: 1 Features: [1.36819218 1.68078941 -0.76738081 1.81031982 -1. 29564234 -0. 24812647
0.81432567 2.39191993-0.3863045 -2.68784489], True Label: 1 Features: [-0.80608179-1.56202581 -0.11129291 -0.44669849 2.15167269 0.44858942
$1.449244312 .97905496-0.08825146$ 1.93605767], True Label: 0 Features: [-0.8844313 0.13904016-1.4524984 2.12580292-2.96176943 2.14785842
0.25608774 0.40146414 -0.38776178 -4.51935815], True Label: 1 Features: [-1.39041723 -1.58182498 -0.49549214-1.8123417 1.0344568 2.26823974
$0.208401341 .90502308 \quad 0.796804831 .55538448]$, True Label: 0 Features: $[-3.47317627-2.30769002 \quad 1.58900576-2.01706469 \quad 0.4299478$ -0.43352042
-2.90820467 0.01957676-1.07990984 2.29560167], True Label: 0 Features: [-0.08279502-0.73031101 -0.00896633 -0.83122695 1.54194766 2.63707685
$2.22334699-0.02236886-0.081023840 .6698177$], True Label: 0 Features: [-1.8425476 -1.35914979 1.05717913 -2.86646674-1.53600455 -0.45212202 -4.83429676 0.32843299-1.36852014 2.32721154], True Label: 0 Features: $\left[\begin{array}{lllll}1.47144722 & 2.70244879 & 0.42513325 & 3.10147977 & -0.7927229\end{array}\right.$ -0.15151702
2.55724136 0.6164221 -0.40568838-4.50799937], True Label: 1 Features: [-0.90630336-0.52716176-1.51178715-1.69716553-0.58513067 0.16004568
-2.22524922 1.48088629-0.93415421 1.15167836], True Label: 0 Features: [0.60990824 2.39092639 -0.03637662 -0.00325465 1.41565638 - 1.14414616
$0.93007486-0.823522620 .21861149-0.7408507$], True Label: 1 Features: [0.84019998 0.87306277 0.35820663 0.92741627-1.2040445 -0.9340804 -0.52555432 2.03500911-0.64031876-1.14017751], True Label: 1 Features: [0.99726588 1.0974018 0.91493339 -0.78139024 1.25419496 1.37728517
1.70410236 0.33653838-0.33037606 0.05434304], True Label: 0 Features: [1.25598828 -3.14096117 0.21876474 -1.17696841-0.71159836 -0. 8546195
-2.03547989-2.06763055 0.10045295 4.60477977], True Label: 1 Features: [0.40418879 3.76178482 -0.53217246 -0.48335022 2.93228571 5. 10468051
5.8067415 -0.58715416 0.08595739-3.99156468], True Label: 0 Features: [-0.34488823-1.7896192 -1.71718913 -0.92850491 2.51212042 2.96714972
$3.05176585-0.70175044 \quad 0.254315631 .76373245]$, True Label: 0 Features: $\left[\begin{array}{lllll}1.5256663 & -1.17446846 & 0.80634841 & -1.21914767 & 2.37224054\end{array}\right.$ 5.06214732
4.61676421-0.43064925-0.40666872 1.43883121], True Label: 0 Features: [-1.33798344 2.17702058 0.02346932-1.12016819-1.22729631 - 1.68586719
-3.38084644 1.11613429 1.31478849-1.36131125], True Label: 1 Features: [-1.11370753-1.60791432 -0.08390186-1.06980872 1.57613727 1.01807407
$0.64582645-1.65241239-0.29813058$ 1.86979047], True Label: 0 Features: [1.38762995 1.88064661-1.34312527 0.69446354 -1.13705034 1.30585798
0.97744231 -1.92231411 0.71119245-2.55868761], True Label: 1 Features: [1.42235523 0.92869985 -0.78680666 -0.7627929 1.40636681 0.44894959
$1.39996628-0.10423798-1.21918583$ 0.90213506], True Label: 0 Features: [$\begin{array}{lllll}1.99568087 & 1.61464788 & -2.32636156 & -0.98539643 & 0.21785902\end{array}$ -0.64286241 -0.30676324-1.01652436-0.21610437 0.85289728], True Label: 1 Features: [-1.48873944-1.15169055-0.12065294-1.93114091 0.22840047 1.29858157
-1.22052169-0.08092495 0.79838647 1.37236448], True Label: 0 Features: $[-4.26981582-1.2462719-0.49627753-1.81346265-1.03937689$ - 1.91109973
-5.14146748 0.30360427 0.71453069 0.89105837], True Label: 0 Features: [$1.58996872-2.4825268$-1.143989 $-0.73429809 \quad 0.59227619$ 0.03627449
0.22979118 0.04175097-2.8166108 3.88893806], True Label: 1

Features: [0.78655992 0.63415678 0.90881241 -1.59760042 1.25436395 0.40033656
$0.28527661-0.72313130 .208055031 .50837179]$, True Label: 0 Features: [$0.92688294-1.05372639$-0.94720301 -1.75665531 1.15112264 - 1.74471745
-1.36604311 -0.80139127-0.24913925 4.17741385], True Label: 1 Features: [0.06349188 0.83038076 0.35283364 -0.18100893 0.5935493 2.21387761
1.83809279 0.43558792-0.19944372-1.3552722], True Label: 0 Features: [$0.31094069-0.69283185$ 1.0374611 -0.15422169 2.75374745 3.86231972
4.78920207 1.19033634-0.22306981 0.14736589], True Label: 0 Features: [-0.84652899 2.856794 -0.15437353-1.97845321 0.99393673 4.02224855
1.63068702 1.08582132 -1.4104272 -2.78816383], True Label: 0 Features: [-0.20056106 1.72035311 -0.78096971 1.73419864 -0.51079436 0.92916021
1.69352904 0.4725574 1.22279864-3.74736989], True Label: 1 Features: [-0.59917536-0.21443001 -0.60130046-1.2269521 0.18176375 1.67968979
-0.06122333-0.41234669 0.03486242 0.21376686], True Label: 0 Features: [0.92172961 -1.72169116 0.87668748 -1.12858852 2.46859264 3.38722897
3.505994461 .67352684 0.14153213 2.33883033], True Label: 0 Features: [0.50984609 1.38869987 0.1343281 2.21215278-0.40095007 2.31700896
3.27068573-0.42670637-1.23666297-4.08746496], True Label: 1 Features: [1.07315514 -1.33345985 0.54633171 -1.35342402 2.13072793 -0.85195439
0.44427384 -0.19544187 0.65186485 4.10819355], True Label: 1 Features: [0.86951982 -0.95612257 -0.42160859 -2.8439248 -0.33522418 - 1.89650019
-3.74921121 0.23424404-1.33080926 4.51113571], True Label: 1 Features: [-2.12692004-1.08859809-1.17324569 2.93808234-2.29147601 3.3771167
1.84248708-1.87197091-0.34477745-5.10797566], True Label: 1 Features: [-0.95297796 1.9164842 -1.43609151 -3.6144505 0.83658818 2.83501189
-0.77558552 1.90729784-0.74684826-0.11130915], True Label: 0 Features: [2.38366491 1.25442708 0.64170925 -2.50275165 1.07383373 - 1.06480976
-1.02336538-0.28164738-0.34658458 3.19749326], True Label: 1 Features: [1.25133075 -0.06199863 0.32417731 0.04068142-0.40824097 0.31846113
0.25783268 0.05991324-0.08672225 0.38710402], True Label: 1 Features: [1.64384021 -1.96471515 -0.4998396 -1.32394587 1.48943326 - 1.08969127
-0.12169383-1.68089508 2.19360262 4.81985206], True Label: 1 Features: [-0.11514408 0.19232471 1.04625721 -0.72808025 0.48190492

1.72154775

$0.8512232-0.50721555-0.61160158-0.2262993$], True Label: 0 Features: [-0.61135786-2.25085978 0.23069732-0.95132912 2.62626954 1.86486299
2.32841786 0.0161209 -1.19202634 2.6054006], True Label: 0 Features: [2.25470224 -1.61957262 -0.33686621 -1.99064954 1.24823757 -2.02552467
-1.280604160 .943051450 .59589746 5.75533265], True Label: 1 Features: [0.55963821 1.77380112 -0.15865118 -1.32203178 1.79708912 2.72591702
2.47551063-0.17898344-1.37522512 -0.73951633], True Label: 0 Features: [0.44065505-0.27909062 -0.40609113 -0.69876188 1.71399626 3.91566319
3.48899490 .48469078 -0.27720312 -0.09548473], True Label: 0 Features: [-0.42620407-1.74907959 1.79906423 -0.45558299 2.91015202 -2.33915747
0.49149414 -1.05538622 0.12949365 3.88793772], True Label: 1 Features: [0.916792341 .53706191 -0.44694773 -1.11211976 1.00464127 0.2687312
$0.510558060 .230537132 .018077380 .32594197]$, True Label: 0 Features: [-0.9893656 -1.83190262 -0.25782938 0.83269106 4.44670193 2.12678287
$5.58673840 .029994241 .098196121 .05519645]$, True Label: 0 Features: [-1.4087387 -2.0072841 0.73954521 -1.34613234 1.9307202 1.95106294
1.18176567 0.29056759 0.37994956 2.00426335], True Label: 0 Features: [-0.45517329-0.17234928 0.77002249 -0.87293256 1.12738291 2.94304357
1.93054065-0.59144382 0.00396128-0.28514598], True Label: 0 Features: [-0.24740705 0.50142557 -0.5643881 0.73634582 2.23357752 -0.62870225
2.21244868 0.57510782-0.13197764 -0.08719306], True Label: 1 Features: [$1.158858850 .76323456-0.92705009$ 1.2196398 -0.68204603 1.58372658
1.85736389-1.60521702 0.56065252 -2.09749604], True Label: 1 Features: [0.92538188-0.24184769 0.39573546-0.85781792-0.66686067 -0.00975562
-1.07539209 -0.67759243 0.31445082 1.20113534], True Label: 1 Features: [0.86389604 0.93965043 -0.14990111 0.34062339 -1. 28917732 2.461181
1.01623607-0.49057083-0.35845551-2.28953913], True Label: 1 Features: [-1.13271369-1.69329919 0.08528407 0.53513775 3.9494233 2.13097263
4.849988351 .739665251 .70013491 0.92412378], True Label: 0 Features: [3.93485167 -2.29777457-0.08839992 -1. 18292122 -0.42955501 0.50162881
-0.03210153 0.55750382-3.2160572 4.76290106], True Label: 1 Features: [-0.71470869-0.5231772 -1.86727355 -0.97868644 0.65530286 1.19932168
0.22005427 1.0078569 1.64632921 0.61263778], True Label: 0

Features: [2.7069226 0.26221191 1.41464267 -0.3156287 -0.96378327 1.2802725
$0.5335704-0.06362684-0.499613320 .52726945]$, True Label: 1 Features: [-1.95499348-1.04442511 -0.42279885-1.67666491-0.13882681 -0.06663793
$-2.31878614 \quad 0.6596523-0.79637448$ 1.30668881], True Label: 0
Features: [-0.91045351 3.66512663-0.02855198-1.05886677 0.62341419
4.13618858
2.20878679-0.00836211-0.57761422 -4.52164295], True Label: 0 Features: [-2.23046426-1.35730002 -1.56049816 0.48229528 2.80235561 0.1160707
2.19822284-1.38177024 0.06354005 0.59374421], True Label: 0 Features: [-0.17952682 0.15299336-1.72168257-0.70447077 0.84356869 2.76306642

$$
1.82179831 .06028864-1.62789785-0.59445925] \text {, True Label: } 0
$$

$$
\text { Features: }\left[\begin{array}{lllll}
0.54391341 & -1.47036747 & 0.9775452 & -1.25314651 & -1.46669607
\end{array}\right.
$$

$$
-0.94611108
$$

$$
-2.933936760 .22011387-0.54501973 \quad 2.56666829], \text { True Label: } 1
$$

Features: [1.49208175 1.0126672 0.64644937 -1.48977766 0.8939649 -0.82507506

```
-0.45622881 0.98608389 0.279748 1.88933545], True Label: 1
```

Features: [1.41842775 2.43556318 -1.08984359 0.64611398-0.3003987
-0.60991474
0.54507539-2.98939302-0.05926802 -1.79410584], True Label: 1

Task 7.1.3 Train a model on some dataset, Compute the accuracy, Apply the given technique, Then re-compute the accuracy.

Generalizing Exemplars

```
# load data
instances = loader.load_file("data/ionosphere.arff")
instances
@relation ionosphere
@attribute a01 numeric
@attribute a02 numeric
@attribute a03 numeric
@attribute a04 numeric
@attribute a05 numeric
@attribute a06 numeric
@attribute a07 numeric
@attribute a08 numeric
@attribute a09 numeric
@attribute a10 numeric
@attribute all numeric
@attribute al2 numeric
```

> @attribute a13 numeric @attribute a14 numeric @attribute a15 numeric @attribute a16 numeric @attribute a17 numeric @attribute a18 numeric @attribute a19 numeric @attribute a20 numeric @attribute a21 numeric @attribute a22 numeric @attribute a23 numeric @attribute a24 numeric @attribute a25 numeric @attribute a26 numeric @attribute a27 numeric @attribute a28 numeric @attribute a29 numeric @attribute a30 numeric @attribute a31 numeric @attribute a32 numeric @attribute a33 numeric @attribute a34 numeric @attribute class $\{b, g\}$
@data
$1,0,0.99539,-0.05889,0.85243,0.02306,0.83398$, -
$0.37708,1,0.0376,0.85243,-0.17755,0.59755,-0.44945,0.60536,-$
$0.38223,0.84356,-0.38542,0.58212,-0.32192,0.56971,-0.29674,0.36946$, -
$0.47357,0.56811,-0.51171,0.41078,-0.46168,0.21266,-0.3409,0.42267$, -
0.54487,0.18641,-0.453,g

1,0,1,-0.18829,0.93035,-0.36156,-0.10868,-0.93597,1,-0.04549,0.50874, -
$0.67743,0.34432,-0.69707,-0.51685,-0.97515,0.05499,-0.62237,0.33109$, -
$1,-0.13151,-0.453,-0.18056,-0.35734,-0.20332,-0.26569,-0.20468$, -
0.18401,-0.1904,-0.11593,-0.16626,-0.06288,-0.13738,-0.02447,b
$1,0,1,-0.03365,1,0.00485,1,-$
$0.12062,0.88965,0.01198,0.73082,0.05346,0.85443,0.00827,0.54591,0.0029$
9,0.83775,-0.13644,0.75535,-0.0854,0.70887,-0.27502,0.43385,-
$0.12062,0.57528,-0.4022,0.58984,-0.22145,0.431,-0.17365,0.60436$, -
$0.2418,0.56045,-0.38238, \mathrm{~g}$
$1,0,1,-0.45161,1,1,0.71216,-1,0,0,0,0,0,0,-1,0.14516,0.54094,-0.3933,-$
$1,-0.54467,-0.69975,1,0,0,1,0.90695,0.51613,1,1,-0.20099,0.25682,1,-$
$0.32382,1$, b
$1,0,1,-0.02401,0.9414,0.06531,0.92106,-0.23255,0.77152,-$
$0.16399,0.52798,-0.20275,0.56409,-0.00712,0.34395,-0.27457,0.5294,-$
$0.2178,0.45107,-0.17813,0.05982,-0.35575,0.02309,-0.52879,0.03286$, -
$0.65158,0.1329,-0.53206,0.02431,-0.62197,-0.05707,-0.59573,-0.04608$, -
0.65697 , g
$1,0,0.02337,-0.00592,-0.09924,-0.11949,-0.00763,-$
$0.11824,0.14706,0.06637,0.03786,-0.06302,0,0,-0.04572,-0.1554,-$
0.00343,-0.10196,-0.11575, -
$0.05414,0.01838,0.03669,0.01519,0.00888,0.03513,-0.01535,-$
0.0324,0.09223,-0.07859,0.00732,0,0,-0.00039,0.12011, b
$1,0,0.97588,-0.10602,0.94601,-0.208,0.92806,-0.2835,0.85996$,
0.27342,0.79766,-0.47929,0.78225,-0.50764,0.74628,-0.61436,0.57945,-
$0.68086,0.37852,-0.73641,0.36324,-0.76562,0.31898,-0.79753,0.22792$, -
$0.81634,0.13659,-0.8251,0.04606,-0.82395,-0.04262,-0.81318,-0.13832$, -
$0.80975, \mathrm{~g}$
$0,0,0,0,0,0,1,-1,0,0,-1,-1,0,0,0,0,1,1,-1,-$
$1,0,0,0,0,1,1,1,1,0,0,1,1,0,0, b$
$1,0,0.96355,-0.07198,1,-0.14333,1,-0.21313,1,-0.36174,0.9257,-$
$0.43569,0.9451,-0.40668,0.90392,-0.46381,0.98305,-0.35257,0.84537$,
$0.6602,0.75346,-0.60589,0.69637,-0.64225,0.85106,-0.6544,0.57577$, -
$0.69712,0.25435,-0.63919,0.45114,-0.72779,0.38895,-0.7342, \mathrm{~g}$
$1,0,-0.01864,-0.08459,0,0,0,0,0.1147,-0.2681,-0.45663,-0.38172,0,0,-$
$0.33656,0.38602,-0.37133,0.15018,0.63728,0.22115,0,0,0,0,-0.14803,-$
$0.01326,0.20645,-0.02294,0,0,0.16595,0.24086,-0.08208,0.38065, b$
$1,0,1,0.06655,1,-0.18388,1,-0.2732,1,-0.43107,1,-0.41349,0.96232$, -
$0.51874,0.90711,-0.59017,0.8923,-0.66474,0.69876,-0.70997,0.70645$, -
$0.7632,0.63081,-0.80544,0.55867,-0.89128,0.47211,-0.865,0.40303,-$
0.83675,0.30996,-0.89093, 0.22995,-0.89158, g
$1,0,1,-0.5421,1,-1,1,-1,1,0.36217,1,-0.41119,1,1,1,-1,1,-0.29354,1,-$
$0.93599,1,1,1,1,1,-0.40888,1,-0.62745,1,-1,1,-1,1,-1, b$
$1,0,1,-0.16316,1,-0.10169,0.99999,-0.15197,1,-0.19277,0.94055,-$
$0.35151,0.95735,-0.29785,0.93719,-0.34412,0.94486,-0.28106,0.90137$, -
$0.43383,0.86043,-0.47308,0.82987,-0.5122,0.8408,-0.47137,0.76224,-$
$0.5837,0.65723,-0.68794,0.68714,-0.64537,0.64727,-0.67226, \mathrm{~g}$
$1,0,1,-0.86701,1,0.2228,0.85492,-0.39896,1,-$
$0.1209,1,0.35147,1,0.07772,1,-0.14767,1,-1,1,-$
$1,0.61831,0.15803,1,0.62349,1,-0.17012,1,0.35924,1,-$
$0.66494,1,0.88428,1,-0.18826$, b
1,0,1,0.0738,1,0.0342,1, -
$0.05563,1,0.08764,1,0.19651,1,0.20328,1,0.12785,1,0.10561,1,0.27087,1$,
$0.44758,1,0.4175,1,0.20033,1,0.36743,0.95603,0.48641,1,0.32492,1,0.467$
$12, \mathrm{~g}$
$1,0,0.50932,-0.93996,1,0.26708,-0.0352,-1,1,-1,0.43685,-1,0,0,-1,-$
$0.34265,-0.37681,0.03623,1,-1,0,0,0,0,-$
$0.16253,0.92236,0.39752,0.26501,0,0,1,0.23188,0,0, b$
1,0,0.99645,0.06468,1,-
$0.01236,0.97811,0.02498,0.96112,0.02312,0.99274,0.07808,0.89323,0.1034$
$6,0.94212,0.05269,0.88809,0.1112,0.86104,0.08631,0.81633,0.1183,0.8366$
$8,0.14442,0.81329,0.13412,0.79476,0.13638,0.7911,0.15379,0.77122,0.159$
3,0.70941,0.12015,g

$1,1,-1,-1,1,-1, b$
$1,0,0.67065,0.02528,0.66626,0.05031,0.57197,0.18761,0.08776,0.34081,0$.
63621,0.12131,0.62099,0.14285,0.78637,0.10976,0.58373,0.18151,0.14395,
$0.41224,0.53888,0.21326,0.5142,0.22625,0.48838,0.23724,0.46167,0.24618$,0.43433,0.25306,0.40663,0.25792,1,0.33036,g
$0,0,1,-1,0,0,0,0,1,1,1,-1,-0.71875,1,0,0,-1,1,1,1,-1,1,1,0.5625,-$
$1,1,1,1,1,-1,1,1,1,1, b$
$1,0,1,-0.00612,1,-0.09834,1,-0.07649,1,-0.10605,1,-0.11073,1,-$
$0.39489,1,-0.15616,0.92124,-0.31884,0.86473,-0.34534,0.91693,-$
$0.44072,0.9606,-0.46866,0.81874,-0.40372,0.82681,-0.42231,0.75784$,
$0.38231,0.80448,-0.40575,0.74354,-0.45039, \mathrm{~g}$
$0,0,1,1,0,0,0,0,-1,-1,0,0,0,0,-1,-1,-1,-1,-1,1,-1,1,0,0,0,0,1,-1,-$
1,1,-1,1,-1,1,b
$1,0,0.96071,0.07088,1,0.04296,1,0.09313,0.90169$,-
0.05144,0.89263,0.0258,0.8325,-
$0.06142,0.87534,0.09831,0.76544,0.0028,0.75206,-0.05295,0.65961,-$
$0.07905,0.64158,-0.05929,0.55677,-0.07705,0.58051,-0.02205,0.49664$,
$0.01251,0.5131,-0.00015,0.52099,-0.00182, \mathrm{~g}$
$0,0,-1,1,0,0,0,0,-1,1,1,1,0,0,0,0,1,-1,-1,1,1,1,0,0,-1,-1,1,-1,1,1,-$
$1,1,0,0, b$
$1,0,1,-0.06182,1,0.02942,1,-0.05131,1,-0.01707,1,-0.11726,0.84493$,
$0.05202,0.93392,-0.06598,0.6917,-0.07379,0.65731,-0.20367,0.9491$, -
$0.31558,0.80852,-0.31654,0.84932,-0.34838,0.72529,-0.29174,0.73094$, -
0.38576,0.54356,-0.26284,0.64207,-0.39487,g
$1,0,1,0.5782,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-0.62796,1,-$
$1,1,-1,1,-1,1,-1,1,-1,1,-1, b$
$1,0,1,-0.08714,1,-0.17263,0.86635,-0.81779,0.94817,0.61053,0.95473$,
$0.41382,0.88486,-0.31736,0.87937,-0.23433,0.81051,-0.6218,0.12245,-$
$1,0.90284,0.11053,0.62357,-0.78547,0.55389,-0.82868,0.48136$, -
$0.86583,0.4065,-0.89674,0.32984,-0.92128,-0.13341,-1, \mathrm{~g}$
$0,0,-1,-1,0,0,-1,1,1,-0.375,0,0,0,0,0,0,1,-1,-1,-1,1,-1,0,0,1,-1,-$
$1,1,-1,-1,0,0,-1,1, b$
1,0,1,0.0838,1,0.17387,1,-
$0.13308,0.98172,0.6452,1,0.47904,1,0.59113,1,0.70758,1,0.82777,1,0.950$
99, 1, 1, 0.98042,1,0.91624,1,0.83899,1,0.74822,1,0.64358,1,0.52479,1,g
$0,0,-1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,0,0,1,1,-1,-1,1,-1,1,-1,1,1,1,-$
1,1,-1,-1,1,1,-1,b
$1,0,1,-0.14236,1,-0.16256,1,-0.23656,1,-0.07514,1,-0.2501,1,-$
$0.26161,1,-0.21975,1,-0.38606,1,-0.46162,1,-0.35519,1,-0.59661,1$,
$0.47643,0.9882,-0.49687,1,-0.7582,1,-0.75761,1,-0.84437, \mathrm{~g}$
$1,0,1,-1,1,1,1,-1,1,-1,1,-1,1,-0.0184,1,-1,1,1,1,-0.85583,1,1,1,-$
$1,0,0,1,1,1,-0.79141,1,1,1,1, b$
$1,0,0.88208,-0.14639,0.93408,-0.11057,0.921,-0.1645,0.88307$, -
$0.17036,0.88462,-0.31809,0.85269,-0.31463,0.82116,-0.35924,0.80681$,
$0.33632,0.75243,-0.47022,0.70555,-0.47153,0.6615,-0.50085,0.61297$,
$0.48086,0.56804,-0.54629,0.50179,-0.59854,0.47075,-0.57377,0.42189$, -
0.58086 , g
$1,0,0.71253,-0.02595,0.41287,-0.23067,0.98019,-0.09473,0.99709$,
0.10236,1,-0.10951,0.58965,1,0.83726,-1,0.8227,-0.17863,0.8076,-
$0.28257,-0.25914,0.9273,0.51933,0.05456,0.65493,-0.20392,0.93124$, -
0.41307,0.63811,-0.21901,0.86136,-0.87354,-0.23186,-1, b
$1,0,1,-0.15899,0.72314,0.27686,0.83443,-0.58388,1,-0.28207,1,-$
$0.49863,0.79962,-0.12527,0.76837,0.14638,1,0.39337,1,0.2659,0.96354,-$
$0.01891,0.92599,-0.91338,1,0.14803,1,-0.11582,1,-0.11129,1,0.53372,1,-$
0.57758, g

1,0,0.66161,-1,1,1,1,-0.67321,0.80893,-0.40446,1,-1,1,-
$0.89375,1,0.73393,0.17589,0.70982,1,0.78036,1,0.85268,1,-$
$1,1,0.85357,1,-0.08571,0.95982,-0.3625,1,0.65268,1,0.34732$, b
$1,0,1,0.00433,1,-0.01209,1,-0.0296,1,-0.07014,0.97839,-0.06256,1$, -
$0.06544,0.97261,-0.07917,0.92561,-0.13665,0.94184,-0.14327,0.99589$,
0.14248,0.94815,-0.13565,0.89469,-0.20851,0.89067,-0.17909,0.85644,-
0.18552,0.83777,-0.20101,0.83867,-0.20766,g
$0,0,1,1,1,-1,0,0,0,0,-1,-1,0,0,0,0,-1,1,1,1,-1,1,-1,1,1,-1,1,1,-$
1,1,1,1,0,0,b
$1,0,0.91241,0.04347,0.94191,0.0228,0.94705,0.05345,0.93582,0.01321,0.9$
1911,0.06348,0.92766,0.12067,0.92048,0.06211,0.88899,0.12722,0.83744,0
$.14439,0.80983,0.11849,0.77041,0.14222,0.75755,0.11299,0.7355,0.13282$,
$0.66387,0.153,0.70925,0.10754,0.65258,0.11447, \mathrm{~g}$
$1,0,1,0.02461,0.99672,0.04861,0.97545,0.07143,0.61745,-$
$1,0.91036,0.11147,0.88462,0.5364,0.82077,0.14137,0.76929,0.15189,1,0.4$ $1003,0.6585,0.16371,0.60138,0.16516,0.54446,0.1639,0.48867,0.16019,0.4$ 3481,0.15436,0.38352,0.14677,1,1,b
$1,0,1,0.06538,1,0.20746,1,0.26281,0.93051,0.32213,0.86773,0.39039,0.75$ $474,0.50082,0.79555,0.52321,0.65954,0.60756,0.57619,0.62999,0.47807,0$. $67135,0.40553,0.6884,0.34384,0.72082,0.27712,0.72386,0.19296,0.70682,0$.11372,0.72688,0.0699,0.71444,g
$1,0,-1,-1,1,1,1,-0.14375,0,0,-1,1,1,1,0.17917,-1,-1,-1,0.0875,-1,1,-$
$1,-1,1,-1,-1,1,-1,-1,-1,1,1,0,0, b$
$1,0,0.90932,0.08791,0.86528,0.16888,1,0.16598,0.55187,0.68154,0.70207$, $0.36719,0.16286,0.42739,0.5762,0.46086,0.51067,0.49618,0.31639,0.12967$,0.37824,0.54462,0.31274,0.55826,0.24856,0.56527,0.18626,0.56605,0.126 35,0.56101,0.06927,0.55061,0.12137,0.67739,g 1,0,-0.64286,-1,1,0.82857,1,-1,1,-0.23393,1,0.96161,1,-0.37679,1,-$1,1,0.13839,1,-1,1,-0.03393,-0.84286,1,0.5375,0.85714,1,1,1,-1,1,-$
$1,1,-1, b$
$1,0,0.99025,-0.05785,0.99793,-0.13009,0.98663,-0.1943,0.99374,-$
$0.25843,0.92738,-0.3013,0.92651,-0.37965,0.89812,-0.43796,0.84922$, -
$0.52064,0.87433,-0.57075,0.79016,-0.59839,0.74725,-0.64615,0.68282$,
$0.68479,0.65247,-0.73174,0.6101,-0.75353,0.54752,-0.80278,0.49195$, -
$0.83245, \mathrm{~g}$
$0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,-0.375,-1,-1,-1,0,0,0,0,-1,-1,-1,-1,-$ $1,1,1,0,0,0, b$
$1,0,1,-0.0373,1,-0.07383,0.99601,-0.11039,0.99838,-0.09931,0.98941$, -
$0.13814,0.96674,-0.21695,0.95288,-0.25099,0.91236,-0.344,0.90581$, -
$0.32152,0.89991,-0.34691,0.87874,-0.37643,0.86213,-0.4299,0.83172$, -
$0.43122,0.81433,-0.42593,0.77919,-0.47977,0.75115,-0.50152, \mathrm{~g}$
$1,0,0.94598,-0.02685,-1,0.26131,-0.36393,0.35639,0.69258,-0.63427,1,-$
$0.03353,-0.2902,-0.0055,-0.54852,0.15452,0.91921,-0.4627,1,-0.50424,-$
$0.29735,-0.31454,-0.73864,0.37361,0.83872,-0.46734,0.52208,-0.5813,1,-$
0.61393,-0.09634,0.20477,-0.06117,0.41913,b

1,0,0.98166,0.00874,0.98103,-0.03818,0.97565,-0.05699,0.95947, -
0.06971,0.99004,-0.04507,0.94713,-0.11102,0.93369,-0.1279,0.94217, -
$0.11583,0.79682,-0.192,0.88274,-0.17387,0.86257,-0.18739,0.88487$,
$0.19689,0.81813,-0.21136,0.78546,-0.23864,0.76911,-0.23095,0.74323$, $0.23902, \mathrm{~g}$
$1,0,0,0,1,0.51724,0,0,0.10991,-1,0,0,0,0,-1,-0.22414,-0.55711$, $0.83297,0.7694,0.63147,0,0,0.53448,0.35668,-0.90302,0.44828,1,-1,-$ 1,0.81573,0,0,0,0,b
1,0,0.84134,-0.18362,0.43644,0.02919,0.93421, -
0.00267,0.87947,0.13795,0.81121,-0.01789,0.88559,0.54991,0.91714,-
$0.57486,0.75,-0.2952,0.86676,-0.20104,1,1,0.4661,-0.1629,0.90066$, -
$0.02778,0.93358,-0.01158,0.61582,-0.32298,0.84463,-0.25706,0.93323$,
$0.01425, \mathrm{~g}$
$0,0,1,1,1,-1,0,0,0,0,1,1,1,1,-1,-1,1,-1,-1,1,0,0,1,-1,1,-1,1,1,-1,-$
1,0,0,0,0,b
$1,0,1,1,1,1,0.9101,1,-0.2697,1,-0.83152,1,-1,1,-1,0.72526,-1,-$
$0.57779,-1,-0.42052,-1,-1,-0.52838,-1,0.90014,-1,1,-1,1,-1,1,-$
$0.34686,1,0.34845, \mathrm{~g}$
1,0,-0.67935,-1,-1,1,1,0.63317,0.03515,-1,-1,-1,1,1,0.88683,-1,-
$1,1,0.8384,1,1,-1,-1,-1,-0.18856,1,1,-1,-1,-1,-1,1,1,0.33611, b$
$1,0,0.95659,0.08143,0.97487,-0.05667,0.97165,-0.08484,0.96097,-$
$0.06561,0.94717,0.01279,0.95436,-0.16795,0.94612,-0.19497,0.9963,-$
$0.32268,0.90343,-0.35902,0.91428,-0.27316,0.9014,-0.29807,0.99899$, -
$0.40747,0.87244,-0.34586,0.92059,-0.30619,0.83951,-0.39061,0.82166$, -
0.41173 , g
$1,0,0.08333,-0.20685,-1,1,-1,1,0.71875,0.47173,-0.82143,-0.62723,-1,-$
$1,-1,1,-0.02753,0.59152,-0.42113,-0.42113,-0.74628,-1,-1,-0.46801$, -
$1,0.2381,1,-1,-1,-0.38914,-1,-1,-1,0.61458, b$
$1,0,1,-0.02259,1,-0.04494,1,-0.06682,1,-0.08799,1,0.56173,1,-$
$0.12738,1,-0.14522,1,0.32407,1,-0.17639,0.99484,-0.18949,0.95601$,
$0.20081,1,-0.92284,0.8728,-0.21793,0.8292,-0.2237,0.78479,-$
0.22765,0.73992,-0.22981,g
$0,0,-1,1,1,-1,-1,1,0,0,1,1,-1,-0.1875,1,1,-1,-1,1,-1,-1,-1,1,1,1,-$
$1,1,1,1,1,0,0,-1,-1, b$
$1,0,1,0.05812,0.94525,0.07418,0.99952,0.13231,1,-$
$0.01911,0.94846,0.07033,0.95713,0.14644,0.94862,0.11224,0.90896,0.2011$ $9,0.96741,0.16265,0.99695,0.14258,0.90784,0.1641,0.91667,0.22431,0.884$
$23,0.23571,0.88568,0.22511,0.78324,0.29576,0.83574,0.31166, \mathrm{~g}$
$1,0,0.17188,-1,-1,1,0,0,0,0,-1,1,0,0,-0.61354,-$
$0.67708,0.80521,0.36146,0.51979,0.14375,0,0,-1,-0.27083,-$
$0.84792,0.9625,1,1,-1,0.67708,0,0,0,0, b$
$1,0,1,0.09771,1,0.12197,1,0.22574,0.98602,0.09237,0.9493,0.19211,0.929$
$92,0.24288,0.89241,0.28343,0.85529,0.26721,0.83656,0.33129,0.83393,0.3$
1698,0.74829,0.39597,0.76193,0.34658, 0.68452,0.42746,0.62764,0.46031,0
. 56791,0.47033,0.54252,0.50903, g
$1,0,0.01667,-0.35625,0,0,0,0,0,0,0,0,0,0,0.12292,-$
$0.55,0.22813,0.82813,1,-0.42292,0,0,0.08333,-1,-0.10625,-0.16667,1,-$
0.76667,-1,0.18854,0,0,1,-0.27292,b
$1,0,1,0.16801,0.99352,0.16334,0.94616,0.33347,0.91759,0.2261,0.91408,0$. 37107,0.8425,0.46899,0.81011,0.49225,0.78473,0.48311,0.65091,0.56977, $0.56553,0.58071,0.55586,0.6472,0.48311,0.55236,0.43317,0.69129,0.35684$,0.76147,0.33921,0.66844,0.22101,0.78685,g
$1,0,0.63816,1,0.20833,-1,1,1,0.87719,0.30921,-0.66886,1,-$
$0.05921,0.58772,0.01754,0.05044,-0.51535,-1,0.14254,-0.03289,0.32675,-$
$0.4386,-1,1,0.80921,-1,1,-0.0614,1,1,0.20614,-1,1,1, b$
$1,0,1,-0.41457,1,0.76131,0.8706,0.18593,1,-$
$0.09925,0.93844,0.4799,0.65452,-0.1608,1,0.00879,0.97613,-$
0.50126,0.80025,-0.24497,0.88065,-0.19095,1,-
$0.12312,0.93593,0.10678,0.9289,-0.07249,1$,
0.27387,0.4397,0.19849,0.51382,-0.05402,g

1,0,0.84783,0.10598,1,0.3913,1,-
1,0.66938,0.08424,1,0.27038,1,0.60598,1,0.35507,1,0.02672,0.58424, -
$0.43025,1,0.63496,0.8913,0.26585,0.91033,-0.33333,1,0.15942,0.37681$, -
0.01947,1,0.22464,1,0.37409, b
$1,0,1,0.28046,1,0.02477,1,0.07764,1,0.04317,0.98762,0.33266,1,0.05489$,
1,0.04384,0.9575,-0.24598,0.84371, -
$0.08668,1,0.0415,0.99933,0.27376,1,-0.39056,0.96414,-$
$0.02174,0.86747,0.2336,0.94578,-0.22021,0.80355,-0.07329, \mathrm{~g}$
$0,0,1,-1,1,-1,1,-1,1,-1,1,1,1,1,1,-1,1,1,1,1,1,1,1,-1,1,-1,1,-$
$1,1,0.65625,0,0,1,-1, b$
$1,0,1,0.67784,0.81309,0.82021,0.43019,1,0.20619,0.80541,-0.43872,1,-$
$0.79135,0.77092,-1,0.40268,-0.39046,-0.58634,-0.97907,-0.42822$, -
$0.73083,-0.76339,-0.37671,-0.97491,0.41366,-1,0.41778,-$
$0.93296,0.25773,-1,0.9357,-0.35222,0.98816,0.03446, \mathrm{~g}$
$1,0,1,1,1,-1,1,-1,1,1,1,1,1,1,1,-1,1,1,1,1,1,1,1,1,1,1,1,0.5,0,0,1,-$
$1,1,-1, b$
$1,0,1,0.03529,1,0.18281,1,0.26968,1,0.25068,1,0.28778,1,0.38643,1,0.31$
$674,1,0.65701,1,0.53846,1,0.61267,1,0.59457,0.89593,0.68326,0.89502,0$.
71374,0.85611,0.67149,0.74389,0.85611,0.71493,0.75837,g
$0,0,1,-1,1,1,-1,-1,1,-1,0,0,0,0,-1,1,1,-1,1,-1,-0.75,1,1,-1,1,-1,1,-$
$1,-1,-1,0,0,1,-1, b$
$1,0,0.96087,0.0862,0.9676,0.19279,0.96026,0.27451,0.98044,0.35052,0.92$
867,0.46281,0.86265,0.52517,0.8282,0.58794,0.73242,0.69065,0.69003,0.7
$314,0.54473,0.6882,0.48339,0.76197,0.40615,0.74689,0.33401,0.83796,0.2$
4944,0.86061,0.13756,0.86835,0.09048,0.86285,g
$1,0,0.69444,0.38889,0,0,-0.32937,0.69841,0,0,0,0,0,0,0.20635,-$
$0.24206,0.21032,0.19444,0.46429,0.78175,0,0,0,0,0.73413,0.27381,0.7619$,0.63492,0,0,0,0,0,0,b
$1,0,1,0.0507,1,0.10827,1,0.19498,1,0.28453,1,0.34826,1,0.38261,0.94575$, 0.42881,0.89126,0.50391,0.75906,0.58801,0.80644,0.59962,0.79578,0.627 58,0.66643,0.63942,0.59417,0.69435,0.49538,0.72684,0.47027,0.71689,0.3 3381,0.75243,g
$0,0,1,1,0,0,1,-1,1,-1,1,1,1,1,1,-1,1,1,1,1,1,-1,-1,-1,1,-1,1,-$
1,1,1,0,0,1,-1,b
$1,0,1,0.04078,1,0.11982,1,0.16159,1,0.27921,0.98703,0.30889,0.92745,0$.
37639,0.91118,0.39749,0.81939,0.46059,0.78619, 0.46994, 0.794,0.56282,0.
70331,0.58129,0.67077,0.59723,0.58903,0.6099,0.53952,0.60932,0.45312,0
.63636,0.40442,0.62658,g
$0,0,1,1,1,-1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,1,1,-1,1,1,-1,1,-$
$1,-1,-1,1, b$
$1,0,1,0.24168,1,0.4859,1,0.72973,1,1,1,1,1,1,1,0.77128,1,1,1,1,0.74468$
$, 1,0.89647,1,0.64628,1,0.38255,1,0.10819,1,-0.1737,1,-0.81383,1, g$ $0,0,1,1,1,-1,1,1,-1,1,0,0,1,1,0,0,0,0,-1,1,-1,1,1,1,1,-1,1,1,1,1,1,-$ 1,-1,1,b
$1,0,1,-0.06604,1,0.62937,1,0.09557,1,0.2028,1,-1,1,-0.40559,1,-$
$0.15851,1,0.04895,1,-0.61538,1,-0.26573,1,-1,1,-0.58042,1,-0.81372,1,-$ 1,1,-0.78555,1,-0.48252,g
$0,0,1,-1,1,1,1,1,1,1,1,1,1,-1,1,-1,1,1,1,-1,1,1,1,1,1,-1,1,1,1,-$
1,1,1,1,-1,b
$1,0,0.92277,0.07804,0.92679,0.16251,0.89702,0.24618,0.84111,0.35197,0$. 78801, 0.42196,0.70716,0.46983,0.70796,0.56476,0.60459,0.642,0.51247,0.
64924,0.39903,0.66975,0.34232,0.68343,0.23693,0.76146,0.18765,0.73885,
$0.09694,0.71038,0.02735,0.77072,-0.04023,0.69509, \mathrm{~g}$
1,0,0.68198, -
$0.17314,0.82332,0.21908,0.46643,0.32862,0.25795,0.58304,1,-$
$0.15194,0.0106,0.44523,0.0106,0.38869,0.18681,0.41168,0.10567,0.36353$,
$0.04325,0.30745,-0.00083,0.24936,-0.02862,0.19405,-0.04314,0.14481$, -
$0.04779,0.10349,-0.04585,0.07064,-0.04013,0.04586$, b
1,0,0.74852,-0.02811,0.6568, -
$0.05178,0.80621,0.02811,0.85947,0.02515,0.63462,0.08728,0.71598,0.0784$,0.73077,0.05178,0.7855,-0.27811,0.65976,-
$0.01479,0.78698,0.06953,0.34615,-0.18639,0.65385,0.02811,0.61009$, -
$0.06637,0.5355,-0.21154,0.59024,-0.14053,0.56361,0.02959, \mathrm{~g}$
1,0,0.39179,
$0.06343,0.97464,0.04328,1,1,0.35821,0.15299,0.54478,0.1306,0.61567$, -
$0.8209,0.57836,0.6791,0.66791,-0.10448,0.46642$, -
$0.11567,0.65574,0.14792,0.83209,0.45522,0.47015,0.16418,0.49309,0.1463$,0.32463,-0.02612,0.39118,0.13521,0.34411,0.12755,b
$1,0,0.67547,0.04528,0.76981,-0.10566,0.77358,0.03774,0.66038,-$
0.04528,0.64528,0.01132,0.66792,-0.13962,0.72075,
$0.02264,0.76981,0.08679,0.61887,-0.07925,0.75849,-0.23774,0.73962$, -
0.14717,0.84906,-0.15094,0.73886,-
$0.05801,0.66792,0.02264,0.86415,0.03774,0.73208,0.00755, \mathrm{~g}$
$1,0,0.72727,-0.05,0.89241,0.03462,1,0.72727,0.66364,-0.05909,0.48182$, -
$0.16818,0.81809,0.09559,0.56818,1,0.50455,0.21818,0.66818,0.1,1,-$
0.3,0.98636, -
$1,0.57273,0.32727,0.56982,0.14673,0.42273,0.08182,0.48927,0.14643,1,1$, b
$1,0,0.57647,-0.01569,0.40392,0,0.38431,0.12941,0.4,-$
$0.05882,0.56471,0.14118,0.46667,0.08235,0.52549$,
$0.0549,0.58039,0.01569,0.50196,0,0.45882,0.06667,0.58039,0.08235,0.498$
$04,0.00392,0.48601,0.10039,0.46275,0.08235,0.45098,0.23529,0.43137,0.1$
7255, g
$1,0,0.41932,0.12482,0.35,0.125,0.23182,0.27955,-$
$0.03636,0.44318,0.04517,0.36194,-0.19091,0.33636$,-
$0.1335,0.27322,0.02727,0.40455,-0.34773,0.12727,-0.20028,0.05078,-$
$0.18636,0.36364,-0.14003,-0.04802,-0.09971,-0.07114,-1,-1,-0.02916$, -
0.07464,-0.00526,-0.06314, b

1,0,0.88305,-
$0.21996,1,0.36373,0.82403,0.19206,0.85086,0.05901,0.90558$, -
$0.04292,0.85193,0.25,0.77897,0.25322,0.69206,0.5794,0.7103,0.39056,0.7$ 3176,0.27575,1,0.34871,0.5676,0.52039,0.69811,0.53235,0.80901,0.58584, $0.43026,0.70923,0.52361,0.54185, \mathrm{~g}$
1,0,0.84557,-0.0858,-0.31745,-0.80553,-0.08961,-
0.56435,0.80648,0.04576,0.89514,-0.00763,-0.18494,0.63966,-0.20019,-
$0.68065,0.85701,-0.11344,0.77979,-0.15729,-0.06959,0.5081,-$
$0.34128,0.80934,0.78932,-0.03718,0.70882,-0.25288,0.77884,-0.14109,-$
0.21354,-0.7817,-0.18494,-0.59867, b

1,0,0.7087,-
$0.24783,0.64348,0.04348,0.45217,0.38261,0.65217,0.18261,0.5,0.26957,0$.
57826,-0.23043,0.50435,0.37826,0.38696,-0.42609,0.36087,-
$0.26087,0.26957,0.11739,0.53246,-0.03845,0.31304,-0.12174,0.4993$,
$0.04264,0.48348,-0.04448,0.64348,-0.25217,0.50435,0.14783, \mathrm{~g}$
$1,0,-0.5418,0.14861,-0.33746,0.73375,0.52012,-0.13932,0.31889,-$
$0.06811,0.20743,-0.1517,0.47368,0.08978,0.56347$, -
$0.1548,0.16409,0.45201,0.33746,0.03406,0.50464,0.07121,-0.63777$, -
$0.6161,1,0.65635,0.41348,-0.40116,-$
$0.1517,0.11146,0.02399,0.5582,0.52632,-0.08978, b$
$1,0,0.29202,0.13582,0.45331,0.16808,0.51783$,
$0.00509,0.52632,0.20883,0.52462,-0.16638,0.47368$,
$0.04754,0.55518,0.03905,0.81664,-0.22411,0.42445$
$0.04244,0.34975,0.06621,0.28183,-0.20883,0.51731,-0.03176,0.50369$,
$0.03351,0.34635,0.09847,0.70798,-0.01868,0.39559,-0.03226, \mathrm{~g}$
$1,0,0.79157,0.16851,0,0,0.56541,0.06874,0.39468,1,0.38359,0.99557$,
$0.02439,0.53215,0.23725,0.1286,-0.02661,0.95122,-0.50998,0.84922$,
$0.102,0.38803,-0.42572,0.23725,-0.91574,0.8071,-0.34146,0.88248,-$
1,0.69401,-1,0.1286,0,0,b
$1,0,0.90116,0.16607,0.79299,0.37379,0.7299,0.50515,0.59784,0.72997,0.4$ 4303,0.81152,0.24412,0.87493,0.06438,0.85038,-0.12611,0.87396, -
0.28739,0.79617,-0.46635,0.65924,-0.57135,0.53805,-0.68159,0.39951, -
$0.71844,0.25835,-0.72369,0.11218,-0.71475,-0.05525,-0.67699,-0.19904, \mathrm{~g}$
$1,0,0.97714,0.19049,0.82683,0.46259,0.71771,0.58732,0.47968,0.84278,0$.
31409,0.92643,0.10289,0.93945,-0.13254,0.8429,-0.3202,0.91624,-
$0.52145,0.79525,-0.68274,0.49508,-0.77408,0.33537,-0.85376,0.17849,-$
$0.83314,-0.01358,-0.82366,-0.19321,-0.67289,-0.33662,-0.59943,-0.497, \mathrm{~g}$
$1,0,-1,-1,0,0,0.50814,-0.78502,0.60586,0.32899,-1,-0.41368,0,0,0,0,1,-$
$0.2671,0.36482,-0.63518,0.97068,-1,-1,-1,1,-0.59609,-1,-1,-1,-1,1,-$
1,0,0,b
$1,0,0.74084,0.04974,0.79074,0.02543,0.78575,0.03793,0.6623,0.09948,0.6$ 7801,0.31152,0.75934,0.07348,0.74695,0.08442,0.70681, -
$0.07853,0.63613,0,0.70021,0.11355,0.68183,0.12185,0.67016,0.15445,0.64$
158,0.13608,0.65707,0.17539,0.59759,0.14697,0.57455,0.15114,g
$1,0,1,-1,0,0,0.77941,-0.99265,0.80882,0.55147,-0.41912,-$
$0.94853,0,0,0,0,0.72059,-0.77206,0.73529,-0.60294,0,0,0.18382,-1,-1$, -
1,-1,-1,1,-1,1,-1,0,0,b
$1,0,1,0.01709,0.96215,-0.03142,1,-0.03436,1,-0.05071,0.99026,-$
0.07092,0.99173,-0.09002,1,-0.15727,1,-0.14257,0.9831,-0.11813,1,-
$0.18519,1,-0.19272,0.98971,-0.22083,0.9649,-0.20243,0.94599,-$
0.17123,0.96436,-0.22561,0.87011,-0.23296,g
$0,1,-1,0,0,0,0,0,0, b$ 1,0,0.95704,-0.12095,0.63318,-0.1269,0.96365,-
$0.18242,0.97026,0.0846,0.92003,-0.01124,0.83543,-0.24719,1,-$
$0.31395,0.99273,-0.21216,0.98678,-0.21018,1,-0.27165,0.93126,-$
$0.39458,1,-0.19233,0.88793,-0.31565,0.81428,-0.23728,0.89095,-$
0.31857,0.69531,-0.41573,g

1,0,0.28409,-0.31818,0,0,0.68182,-
$1,0.30682,0.95833,0.64394,0.06439,0.34848,-0.84848,0,0,0.59091$, -
$0.35985,0.45076,-0.80682,0,0,0,0,0.24242,0.17803,1,-0.23864,0.06061,-$
$0.48485,0.16288,-0.70076,0,0, b$
$1,0,0.9449,-0.49311,1,-0.03692,0.98898,-0.87052,0.90083,0.66942,1,-$
$0.10104,1,-0.12493,1,-0.15017,1,-0.17681,1,-0.20491,1,-0.23452,1,-$
$0.26571,1,-0.29852,1,-0.33304,1,-0.36931,1,-0.4074,1,-0.44739, g$
$1,0,0,0,0,0,0,0,0,0,0.62195,1,0,0,0,0,0.36585,-0.71951,0.56098,-$
$1,0,0,0,0,0,0,1,0.10976,0,0,0,0,0,0, b$
$1,0,0.99449,0.00526,0.84082,-0.11313,0.88237,-0.16431,0.99061,-$
$0.06257,0.96484,-0.07496,0.85221,0.02966,0.87161,-0.20848,0.93881$,
$0.12977,0.98298,-0.08935,0.89876,0.00075,0.87836,-0.05882,0.93368$,
$0.19872,0.87579,-0.17806,0.94294,-0.16581,0.80253,-0.25741,0.76586$,
$0.27794, \mathrm{~g}$
$1,0,0.10135,0.10811,0,0,0,0,0.5473,0.82432,0.31081,1,0,0,0,0,0.37162,-$
$1,0.33108,-1,0,0,0,0,-0.42568,-1,1,-1,0.55405,-0.23649,0,0,0,0, b$
$1,0,1,-0.57224,0.9915,-0.73371,0.89518,-0.9745,1,-0.35818,1,-$
$0.23229,0.6289,-0.86402,1,-0.57535,1,-0.79603,0.76771,-$
$0.88952,0.96601,-1,0.7012,-0.74896,0.61946,-0.76904,0.53777,-$
$0.77986,0.8102,-1,1,-1,0.30445,-0.76112, \mathrm{~g}$
$1,0,0.65909,-0.62879,0,0,0,0,0.77273,1,1,-0.2803,0,0,0,0,0.62121$,
$0.22727,0.84091,-1,1,-1,0,0,0,0,1,-0.93939,-0.12879,-0.93182,0,0,0,0, b$
$1,0,0.86284,0.1931,0.8092,0.41149,0.67203,0.55785,0.54559,0.69962,0.36$
705,0.81533,0.19617,0.85671,-0.04061,0.86284,-0.17241,0.75785, -
$0.341,0.65747,-0.48199,0.56092,-0.6023,0.40996,-0.59234,0.25747$, -
$0.63038,0.08818,-0.57241,-0.07816,-0.54866,-0.19923,-0.42912$, -
$0.31954, \mathrm{~g}$
$1,0,0.42,-0.61,0,0,1,-1,0.9,1,0.43,0.64,0,0,0,0,0.67,-0.29,0.84,-$
$1,0,0,0,0,0.21,0.68,1,0.22,0,0,0,0,0,0, b$
$1,0,1,0.23395,0.91404,0.52013,0.7802,0.72144,0.4766,0.84222,0.27639,0$.
9173,0.09467,0.88248,-0.2198,0.91404,-0.34168, 0.75517, -
$0.5136,0.64527,-0.64527,0.44614,-0.74102,0.29162,-0.70838,0.03591$, -
$0.71731,-0.11943,-0.64962,-0.28183,-0.51251,-0.44505,-0.37432,-$
0.53319 , g
$1,0,0.91353,0.81586,-0.72973,1,-0.39466,0.55735,0.05405,0.2973$,
0.18599,-0.10241,-0.03158,-0.0897,0.01401,-0.03403,0.01108,-
$0.00537,0.00342,0.00097,0.00048,0.00075,-0.00003,0.00019,-$
$0.00003,0.00002,-0.00001,0,0,0,0,0,0,0, b$
1,0,0.21429,-
$0.09524,0.33333,0.07143,0.19048,0.19048,0.2381,0.09524,0.40476,0.02381$,0.30952,-0.04762,0.30952,-0.04762,0.28571, -
$0.11905,0.33333,0.04762,0.30952,0,0.21429,-0.11905,0.35714,-$
$0.04762,0.22109,-0.0229,0.19048,0,0.16997,-0.02034,0.14694,-0.01877, g$

```
1,0,1,-0.14754,1,0.04918,0.57377,-0.01639,0.65574,0.01639,0.85246,
0.03279,0.72131,0,0.68852,-0.16393,0.19672,-0.14754,0.65558,
0.17176,0.67213,0.03279,1,-0.29508,0.31148,-0.34426,0.52385,-
0.20325,0.32787,-0.03279,0.27869,-0.44262,0.4918,-0.06557,b
1,0,0.98182,0,0.88627,0.03131,0.86249,0.04572,0.8,0,0.69091,0.04545,0.
79343,0.08436,0.77118,0.09579,0.62727,0.25455,0.68182,0.12727,0.70674,
0.12608,0.68604,0.13493,0.74545,0.22727,0.64581,0.15088,0.67273,0.0272
7,0.60715,0.16465,0.5884,0.17077,g
1,0,0.39286,0.52381,-0.78824,0.11342,-0.16628,-
0.76378,0.66667,0.0119,0.82143,0.40476,-0.6723,0.30729,-0.34797,-
0.63668,0.46429,0.15476,0.54762,0.05952,-0.5183,0.44961,-0.47651,-
0.47594,0.32143,0.70238,0.51971,0.38848,0.57143,0.39286,-0.54891,
0.29915,0.25441,-0.55837,b
1,0,0.86889,-0.07111,1,-0.02494,1,-0.06889,0.87778,0.00222,0.83556,-
0.06444,1,-0.07287,1,-0.2,0.86889,0.05333,0.88,-0.03778,1,-0.11526,1,-
0.18667,0.84444,0.03556,1,-0.14162,0.82222,-0.14667,1,-0.15609,1,-
0.44222,g
1,0,0.43636,-0.12727,0.58182,-0.14545,0.18182,-0.67273,0.34545,-
0.03636,0.29091,-0.05455,0.29091,0.29091,0.36364,-0.41818,0.2,-
0.01818,0.36364,0.05455,0.12727,0.49091,0.61818,0.16364,0.32727,0.1636
4,0.41098,-0.07027,0.34545,-0.05455,0.12727,-0.36364,0.29091, -
0.29091,b
1,0,1,-0.92453,1,0.75472,0.49057,-0.0566,0.62264,0,1,-
0.00054,0.45283,0.07547,0.62264,-0.0566,0.98878,-
0.00085,0.5283,0,0.5283,0.07547,0.9519,-0.00112,1,0.79245,0.92192,-
0.00128,0.9434,-1,1,0.43396,0.43396,-0.11321,g
1,0,0.7381,0.83333,-0.7619,-0.2381,0.33333,-0.14286,0.45238,-0.14286,-
0.67285,0.12808,0.33333,0,0.28571,-0.07143,-
0.38214,0.51163,0.2381,0.02381,0.45238,0.04762,0.16667,-0.2619,-
0.57255,-0.10234,0.24889,-0.51079,1,0,-0.66667,-
0.04762,0.2619,0.02381,b
1,0,0.4375,0.04167,0.58333,-0.10417,0.39583,0,0.33333,-
0.0625,0.47917,0,0.29167,0.10417,0.54167,0.02083,0.4375,-
0.22917,0.35417,-0.22917,0.33333,0.08333,0.25,0.1875,0.39583,
0.1875,0.44012,-0.10064,0.41667,-0.08333,0.58333,-0.3125,0.33333,
0.0625,g
1,0,1,1,0,0,0,0,0,0,0.47744,-0.89098,-0.51504,0.45489,
0.95489,0.28571,0.64662,1,0,0,0,0,0.6203,0.20301,-1,-1,1,-
1,1,1,0,0,0,0,b
1,0,0.95217,0.06595,0.93614,0.1303,0.90996,0.19152,0.84881,-
0.49962,0.90023,0.6132,0.77937,0.34328,0.72254,0.37988,0.66145,0.40844
,0.95472,0.59862,0.53258,0.44088,0.46773,0.44511,0.4044,0.44199,0.3437
4,0.43221,0.9033,1,0.23405,0.3962,0.18632,0.37191,g
1,0,0.5984,0.40332,0.82809,0.80521,0.76001,0.70709,0.8401,-
0.10984,0.97311,0.07981,0.95824,-0.85727,0.91962,0.88444,0.95452,-
0.05206,0.88673,0.18135,0.98484,-0.69594,0.8667,-0.85755,0.28604,
0.30063,1,0.17076,0.62958,0.42677,0.87757,0.81007,0.81979,0.68822,b
1,0,0.95882,0.10129,1,-0.01918,0.98313,0.02555,0.96974,-
0.09316,0.98955,-0.02716,0.9798,-0.03096,1,-0.05343,1,-
0.05179,0.9384,0.01557,0.9762,-0.09284,0.97889,-0.05318,0.91567,-
```

$0.15675,0.95677,-0.06995,0.90978,0.01307,1,-0.10797,0.93144,-0.06888, \mathrm{~g}$ $1,0,0,0,-0.33672,0.85388,0,0,0.68869,-1,0.97078,0.31385,-0.26048$, $0.59212,-0.30241,0.65565,0.94155,0.16391,0,0,0,0,-0.18043,-1,0,0,1,-$ 1,0,0,0.04447,0.61881,0,0,b 1,0,0.96933,0.00876,1,0.00843,0.98658,-0.00763,0.97868,-
$0.02844,0.9982,-0.0351,1,-0.01271,1,-0.02581,1,-$
$0.01175,0.98485,0.00025,1,-0.02612,1,-0.04744,0.96019,-$
$0.04527,0.99188,-0.03473,0.9702,-0.02478,1,-0.03855,0.9842,-0.04112, \mathrm{~g}$
$1,0,0,0,0.98919,-0.22703,0.18919,-0.05405,0,0,0.93243,0.07297,1,-$
$0.2,1,0.07027,1,-0.11351,0,0,1,-0.21081,1,-0.41622,0,0,1,-$
0.17568,0,0,1,-0.25946,0.28919,-0.15676,b

1,0,0.64122,0.01403,0.34146,-
$0.02439,0.52751,0.03466,0.19512,0.12195,0.43313,0.04755,0.21951,0.0487$ 8,0.29268,0,0.36585,0,0.31707,0.07317,0.26829,0.12195,0.23698,0.05813, $0.21951,0.09756,0.19304,0.05641,0.1741,0.05504,0.19512,0,0.17073,0.073$ 17, g
$1,0,1,1,1,-1,0,0,0,0,1,1,1,-1,1,1,1,-1,0,0,0,0,1,-0.27778,0,0,1,-$
$1,1,1,1,-1,0,0, b$
$1,0,0.34694,0.20408,0.46939,0.2449,0.40816,0.20408,0.46939,0.44898,0.3$ 0612,0.59184,0.12245,0.55102,0,0.5102,-0.06122,0.55102, -
$0.20408,0.55102,-0.28571,0.44898,-0.28571,0.32653,-0.61224,0.22449$, -
$0.46579,0.14895,-0.59184,0.18367,-0.34694,0,-0.26531,-0.2449, \mathrm{~g}$
$1,0,0,0,1,-1,0,0,0,0,1,1,1,-0.25342,1,0.23288,1,-1,0,0,0,0,1,1,0,0,1,-$
1,0,0,1,-1,0,0,b
$1,0,0.89706,0.38235,0.91176,0.375,0.74265,0.67647,0.45588,0.77941,0.19$
118,0.88971,-0.02206,0.86029,-0.20588,0.82353,-0.375,0.67647,-
$0.5,0.47794,-0.73529,0.38235,-0.86029,0.08824,-0.74265,-0.125$, -
0.67925,-0.24131,-0.55147,-0.42647,-0.44118,-0.50735,-0.28676,-
0.56618, g

1,0,-1,0.28105,0.22222,0.15033,-0.75693,-0.70984,-0.30719,0.71242,-
$1,1,-0.81699,0.33987,-0.79085,-0.02614,-0.98039,-0.83007,-0.60131,-$
0.54248,-0.04575,-0.83007,0.94118,-0.94118,-1,-
$0.43137,0.74385,0.09176,-1,0.05229,0.18301,0.02614,-0.40201,-0.48241, b$
$1,0,0.26667,-0.1,0.53333,0,0.33333,-$
$0.13333,0.36667,0.11667,0.56667,0.01667,0.71667,0.08333,0.7,-$
0.06667,0.53333,0.2,0.41667,-
$0.01667,0.31667,0.2,0.7,0,0.25,0.13333,0.46214,0.05439,0.4,0.03333,0.4$ 6667,0.03333,0.41667,-0.05,g
1,0,-0.26667,0.4,-0.27303,0.12159,-0.17778,-0.04444, 0.06192,-
$0.06879,0.04461,0.02575,-0.00885,0.02726,-0.01586,-0.00166,-0.00093,-$
$0.00883,0.0047,-0.00153,0.00138,0.00238,-0.00114,0.00102,-0.00069$,
$0.0005,0.00019,-0.00043,0.00026,0.00005,0,0.00015,-0.00008,0.00002, \mathrm{~b}$
$1,0,1,-0.37838,0.64865,0.2973,0.64865,-0.24324,0.86486,0.18919,1,-$
$0.27027,0.51351,0,0.62162,-0.05405,0.32432,-0.21622,0.71833,-$
$0.17666,0.62162,0.05405,0.75676,0.13514,0.35135,-0.2973,0.61031,-$
0.22163,0.58478,-0.23027,0.72973,-0.59459,0.51351,-0.24324,g
$1,0,0.94531,-0.03516,-1,-0.33203,-1,-0.01563,0.97266,0.01172,0.93359$, -$0.01953,-1,0.16406,-1,-0.00391,0.95313,-0.03516,0.92188,-0.02734$, -
$0.99219,0.11719,-0.93359,0.34766,0.95703$, -
$0.00391,0.82041,0.13758,0.90234,-0.06641,-1,-0.1875,-1,-0.34375, b$ $1,0,0.95202,0.02254,0.93757,-0.01272,0.93526,0.01214,0.96705,-$
0.01734,0.96936,0.0052,0.95665,-0.03064,0.9526,-0.00405,0.9948,-
$0.02659,0.99769,0.01792,0.93584,-0.04971,0.93815,-0.0237,0.97052$, -
$0.04451,0.96215,-0.01647,0.97399,0.01908,0.95434,-$
0.0341,0.95838,0.00809,g
$1,0,1,-0.05529,1,-1,0.5,-0.11111,0.36111,-0.22222,1,-0.25712,0.16667$, -
$0.11111,1,-0.3466,1,-0.38853,1,-0.42862,0,-0.25,1,-0.50333,1,-$
$0.27778,1,-0.57092,1,-0.27778,1,-0.63156,1,-0.65935, b$
$1,0,0.31034,-0.10345,0.24138,-0.10345,0.2069,-0.06897,0.07405,-$
0.05431,0.03649,-0.03689,0.01707,-0.02383,0.00741,-0.01482,0.00281, -
0.00893,0.00078,-0.00523,-0.00003,-0.00299,-0.00028,-0.00166,-
0.00031,-0.0009,-0.00025,-0.00048,-0.00018,-0.00024,-0.00012,-
0.00012,-0.00008,-0.00006,g

1,0,0.62745,-0.07843,0.72549,0,0.60784,-0.07843,0.62745,-
$0.11765,0.68627,-0.11765,0.66667,-0.13725,0.64706,-0.09804,0.54902$, -
$0.11765,0.54902,-0.21569,0.58824,-0.19608,0.66667,-0.23529,0.45098$,
$0.2549,0.52409,-0.24668,0.56863,-0.31373,0.43137,-0.21569,0.47059$,
0.27451 , b
$1,0,0.25,0.16667,0.46667,0.26667,0.19036,0.23966,0.07766,0.19939,0.010$
7,0.14922,-0.02367,0.10188,-0.03685,0.06317,-0.03766,0.03458, -
$0.0323,0.01532,-0.02474,0.00357,-0.01726,-0.00273,-0.01097,-0.00539$,
0.00621,-0.00586,-0.00294,-0.0052,-0.00089,-0.00408, 0.00025,-0.00291, g
$1,0,-0.65625,0.15625,0.0625,0,0,0.0625,0.625,0.0625,0.1875,0,-$
$0.03125,0.09375,0.0625,0,0.15625,-0.15625,0.4375,-0.375,0,-$
$0.09375,0,0,0.03125,-0.46875,0.03125,0,-0.71875,0.03125,-$
0.03125,0,0,0.09375, b
$1,0,1,-0.01081,1,-0.02703,1,-0.06486,0.95135,-0.01622,0.98919,-$
$0.03243,0.98919,0.08649,1,-0.06486,0.95135,0.09189,0.97838$,-
$0.00541,1,0.06486,1,0.04324,0.97838,0.09189,0.98556,0.01251,1,-$
$0.03243,1,0.02703,1,-0.07027, \mathrm{~g}$
1,0,0.85271,0.05426,1,0.08069,1,1,0.91473,-
$0.00775,0.83721,0.03876,1,0.27153,1,1,0.81395,0.04651,0.90698,0.11628$,
$1,0.5067,1,-1,0.8062,0.03876,1,0.71613,0.84496,0.06977,1,0.87317,1,1, b$
$1,0,0.90374,-0.01604,1,0.08021,1,0.01604,0.93048,0.00535,0.93583$,
$0.01604,1,0,1,0.06417,1,0.04813,0.91444,0.04278,0.96791,0.02139,0.9893$
$0.01604,0.96257,0.05348,0.96974,0.04452,0.87701,0.0107,1,0.09091,0.978$
61,0.06417,g
$1,0,-0.205,0.2875,0.23,0.1,0.2825,0.3175,0.3225,0.35,0.36285,-$
$0.34617,0.0925,0.275,-0.095,0.21,-0.0875,0.235,-0.34187,0.31408,-$
0.48,-0.08,0.29908,0.33176,-0.58,-0.24,0.3219,-0.28475,-0.47,0.185,-
$0.27104,-0.31228,0.40445,0.0305, b$
$1,0,0.6,0.03333,0.63333,0.06667,0.7,0.06667,0.7,0,0.63333,0,0.8,0,0.73$
333,0,0.7,0.1,0.66667,0.1,0.73333,-
$0.03333,0.76667,0,0.63333,0.13333,0.65932,0.10168,0.6,0.13333,0.6,0.16$ 667,0.63333,0.16667,g
1,0,0.05866,-0.00838,0.06704,0.00838,0,-0.01117,0.00559,-
0.03911,0.01676,-0.07542,-0.00559,0.05307,0.06425,-0.03352,0,0.09497, -
$0.06425,0.07542,-0.04749,0.02514,0.02793,-$
$0.00559,0.00838,0.00559,0.10335,-0.00838,0.03073$,-
$0.00279,0.04469,0,0.04749,-0.03352, b$
$1,0,0.94653,0.28713,0.72554,0.67248,0.47564,0.82455,0.01267,0.89109,-$
$0.24871,0.84475,-0.47644,0.56079,-0.75881,0.41743,-0.66455,0.07208$, -
$0.65426,-0.19525,-0.52475,-0.44,-0.30851,-0.55089,-0.04119,-$
$0.64792,0.16085,-0.5642,0.36752,-0.41901,0.46059,-0.22535,0.50376,-$
0.0598 , g

1,0,0.0546,0.01437,-0.02586,0.04598,0.01437,0.04598,-
$0.07759,0.00862,0.01724,-0.06609,-0.03736,0.0431,-0.08333,-0.04598$, -
0.09483,0.08046,-0.04023,0.05172,0.02011,0.02299,-0.03736,-
0.01149,0.03161, -
0.00862,0.00862,0.01724,0.02586,0.01149,0.02586,0.01149,-0.04598,-
0.00575 , b

1,0,0.72414,-
$0.01084,0.79704,0.01084,0.8,0.00197,0.79015,0.01084,0.78424$, -
$0.00985,0.8335,0.03251,0.85123,0.01675,0.80099,-0.00788,0.79113,-$
$0.02956,0.75961,0.0335,0.74778,0.05517,0.72611,-$
$0.01478,0.78041,0.00612,0.74089,-$
$0.05025,0.82956,0.02956,0.79015,0.00788, \mathrm{~g}$
$1,0,0.03852,0.02568,0.00428,0,0.01997,-0.01997,0.0214,-0.04993$, -
$0.0485,-0.01284,0.01427,-0.02282,0,-0.03281,-0.04708,-0.02853$,-
$0.01712,0.03566,0.0214,0.00428,0.05136,-$
$0.02282,0.05136,0.01854,0.03994,0.01569,0.01997,0.00713,-0.02568$,
0.01854,-0.01427,0.01997,b
$1,0,0.4709,0.22751,0.42328,0.33598,0.25661,0.47619,0.01852,0.49471$, -
0.02116,0.53968,-0.34127,0.31217,-0.4127,0.3254,-0.51587,0.06878,-
0.5,-0.1164,-0.14815,-0.1455,-0.14815,-0.38095,-
0.2328,0.00265,0.03574,-0.31739,0.15873,-0.21693,0.24868,-
0.24339,0.2672,0.04233,g

1,0,0.08696,0.00686,0.13959,-0.04119,0.10526,-0.08238,0.12586,-
$0.06178,0.23341,-0.01144,0.12357,0.0778,0.14645,-0.13501,0.29062$, -
$0.04805,0.18993,0.07323,0.1167,0,0.11213,-0.00229,0.15103,-$
$0.10297,0.08467,0.01373,0.11213,-0.06636,0.09611,-0.07323,0.1167$, -
0.06865 , b
$1,0,0.94333,0.38574,0.48263,0.64534,0.21572,0.77514,-0.55941,0.64899,-$
$0.73675,0.42048,-0.76051,0,-0.62706,-0.31079,-0.38391,-0.62157,-$
$0.12797,-0.69287,0.49909,-0.6362,0.71481,-0.3766,0.73857$, -
$0.05484,0.60098,0.30384,0.45521,0.60512,0.02742,0.54479,-$
$0.21572,0.50457, \mathrm{~g}$
$1,0,0.01975,0.00705,0.0409$,-
$0.00846,0.02116,0.01128,0.01128,0.04372,0.00282,0.00141,0.01975,-$
$0.03103,-0.01975,0.06065,-0.0409,0.0268,-0.02398,-0.00423,0.04372$, -
$0.02539,0.01834,0,0,-0.01269,0.01834,-0.01128,0.00564,-0.01551,-$
0.01693,-0.02398,0.00705,0,b
$1,0,0.85736,0.00075,0.81927,-0.05676,0.77521,-$
$0.04182,0.84317,0.09037,0.86258,0.11949,0.88051$,-
$0.06124,0.78342,0.0351,0.83719,-0.06796,0.8357,-$
$0.1419,0.88125,0.01195,0.90515,0.0224,0.79686,-0.01942,0.82383,-$
$0.03678,0.88125,-0.06423,0.73936,-0.01942,0.79089,-0.09186, \mathrm{~g}$ $1,0,1,-1,1,1,-1,1,1,-1,1,-1,-1,-1,-1,1,1,1,1,1,-1,1,1,-1,1,-$ $1,1,1,1,1,-1,1,-1,1, b$
$1,0,0.85209,0.39252,0.38887,0.76432,0.08858,0.98903,-0.42625,0.88744,-$
$0.76229,0.4998,-0.93092,0.10768,-0.859,-0.31044,-0.6603,-0.55262$, -
$0.1926,-0.86063,0.28444,-0.80496,0.64649,-0.3523,0.77814$, -
$0.23324,0.71698,0.21343,0.3783,0.5831,0.19667,0.66315,-$
0.11215,0.64933,g
$1,0,1,1,1,0.5125,0.625,-1,1,1,0.025,0.03125,1,1,0,0,1,-$
$1,1,1,1,1,0.3125,1,1,1,1,1,1,1,-0.94375,1,0,0, b$
$1,0,1,0.54902,0.62745,1,0.01961,1,-0.4902,0.92157,-0.82353,0.58824$, -
$1,0.11765,-0.96078,-0.33333,-0.64706,-0.68627,-0.23529$,
$0.86275,0.35294,-1,0.7451,-0.72549,0.92157,-$
$0.21569,0.92874,0.21876,0.72549,0.56863,0.23529,0.90196$, -
0.11765,0.90196,g
$1,0,0,0,-1,-1,-1,1,0,0,-1,1,1,1,1,-1,0,0,0,0,-1,-1,-1,1,1,0.4375,1,-$
$1,0,0,-1,-1,-1,1, b$
$1,0,0.44444,0.44444,0.53695,0.90763,-0.22222,1,-0.33333,0.88889,-$
$1,0.33333,-1,-0.11111,-1,-0.22222,-0.66667,-0.77778,0.55556,-1,-$
0.22222,-0.77778,0.77778,-
$0.22222,0.33333,0,0.9212,0.45019,0.57454,0.84353,0.22222,1,-$
0.55556,1, g
$0,1,0,0,0,0,0,0,0, b$
$1,0,1,0,1,0,0.5,0.5,0.75,0,0.91201,0.12094,0.89067,0.1421,0.86922,0.16$
$228,0.75,0.25,0.75,0.5,0.75,0,1,-$
$0.25,0.5,0.5,0.73944,0.26388,0.75,0.25,0.69635,0.29074,0.67493,0.30293$
, 9
$0,0,-1,1,1,1,0,0,1,-1,1,-1,1,-1,-1,-1,0,0,-1,-1,0,0,0,0,-1,-1,1,-$
$1,1,1,-1,-1,0,0, b$
1,0,1,0,1,0,0.66667,0.11111,1,-0.11111,0.88889,-0.11111,1,-
$0.22222,0.77778,0,0.77778,0,1,-0.11111,0.77778,-0.11111,0.66667,-$
$0.11111,0.66667,0,0.90347,-0.05352,1,0.11111,0.88889,-0.11111,1,0, g$
$0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,1,0.75,0,0,0,0,-1,1,0,0,1,-1,-1,-$
$1,1,1,0,0, b$
$1,0,1,0.45455,1,-0.45455,1,0.09091,1,-0.09091,1,0,1,-0.27273,1,-$
$0.18182,1,0.09091,1,0,1,-0.36364,1,0.09091,1,-0.09091,1,-$
$0.04914,1,0.45455,1,-0.27273,1,-0.18182$, g
$1,0,0.62121,-0.63636,0,0,0,0,0.3447,0.28788,0.42803,0.39394,-$
$0.07576,0.51894,0.36364,0.31439,-0.53788,0.32955,0.12121$, -
$0.14773,0.01894,-0.53409,-0.57576,0.17803,0.29167,-0.27273,0.25758,-$
$0.57576,0.43182,0.24242,0.18182,-0.02273,0.17045,-0.41667, b$
$1,0,1,0.11765,1,0.23529,1,0.41176,1,0.05882,1,0.23529,1,0.11765,1,0.47$
059,1,-0.05882,1,-0.11765,1,0.35294,1,0.41176,1,-
$0.11765,1,0.20225,1,0.05882,1,0.35294,1,0.23529, \mathrm{~g}$
$1,0,0,0,-1,-0.62766,1,0.51064,0.07979,-0.23404,-1,-0.3617,0.12766,-$
$0.59043,1,-1,0,0,0.82979,-0.07979,-0.25,1,0.17021,-0.70745,0,0,-$
0.19149,-0.46809,-0.2234,-0.48936,0.74468,0.90426,-0.67553,0.45745, b
$1,0,0.91667,0.29167,0.83333,-0.16667,0.70833,0.25,0.875,-$
$0.08333,0.91667,0.04167,0.83333,0.125,0.70833,0,0.875,0.04167,1,0.0833$

3,0.66667,-0.08333,0.75,0.16667,0.83333,-
$0.125,0.83796,0.05503,1,0.20833,0.70833,0,0.70833,0.04167, \mathrm{~g}$
$1,0,0.1859,-0.16667,0,0,0,0,0,0,0,0,0.11538,-0.19071,0,0,0,0,0,0,0,0,-$
$0.05128,-0.06571,0.07853,0.08974,0.17308$, -
$0.10897,0.125,0.09615,0.02564,-0.04808,0.16827,0.19551, \mathrm{~b}$
$1,0,1,-0.08183,1,-0.11326,0.99246,-0.29802,1,-0.33075,0.96662,-$
$0.34281,0.85788,-0.47265,0.91904,-0.4817,0.73084,-0.65224,0.68131,-$
$0.63544,0.8245,-0.78316,0.58829,-0.74785,0.67033,-0.96296,0.48757$, -
0.85669,0.37941,-0.83893,0.24117,-0.88846,0.29221,-0.89621,g

1,0,1,1,-1,1,-1,-
$0.82456,0.34649,0.21053,0.46053,0.07018,0.22807,0.05702,0.35088,0.3464$
9,0.72807,-0.03947,0.22807,0.5307,0,0,-0.29825,-0.16228,1,-0.66667,1,-
$1,1,-0.24561,0.35088,0.20175,0.82895,0.07895, b$
$1,0,1,0.24077,0.99815,0.00369,0.80244,-0.30133,0.89919$,-
$0.23486,0.70643,-0.24077,0.73855,-0.30539,0.71492,-0.36078,0.47194,-$
$0.61189,0.40473,-0.55059,0.61041,-0.39328,0.53176,-0.32681,0.23966,-$
$0.52142,0.29208,-0.4839,0.12777,-0.39143,0.15657,-0.51329,0.18353,-$
$0.46603, \mathrm{~g}$
$0,0,-1,1,1,-1,0,0,0,0,1,-1,1,1,0,0,1,-1,0,0,0,0,1,1,-1,1,1,-1,-1,1,-$
1,-1,0,0,b
$1,0,0.92247,-0.19448,0.96419,-0.17674,0.87024,-0.22602,0.81702,-$
$0.2707,0.79271,-0.28909,0.70302,-0.49639,0.63338,-0.49967,0.37254$, -
$0.70729,0.2707,-0.72109,0.40506,-0.54172,0.33509,-0.59691,0.1475,-$
0.63601,0.09312,-0.59589,-0.07162,-0.54928,-0.0184,-0.54074,-0.07457, -
$0.47898, \mathrm{~g}$
1,0,-1,-1,-0.50694,1,1,-1,1,0.53819,0,0,0.23958,-
$1,1,1,0,0,1,1,1,1,0,0,-0.71528,1,0.33333,-1,1,-1,0.69792$, -
1,0.47569,1,b
$1,0,0.84177,0.4346,0.5,0.7616,0.09916,0.9346,-0.37764,0.88186,-$
$0.72363,0.61181,-0.93882,0.19409,-0.86709,-0.25527,-0.62869,-0.65612$, -
$0.25105,-0.85654,0.16245,-0.86498,0.51477,-0.66878,0.74895,-$
$0.28903,0.77937,0.07933,0.64135,0.42827,0.31435,0.62447$, -
$0.00422,0.69409, g$
$1,0,1,1,0,0,1,-1,-1,-1,1,1,1,-1,0,0,1,-1,1,1,0,0,1,-1,-1,-1,1,1,-1,1,-$
$1,1,0,0, b$
$1,0,1,0.63548,1,1,0.77123,1,-0.33333,1,-1,1,0,1,-1,1,-1,0,-1,-$
$0.66667,-1,-0.92536,-1,-0.33333,-0.33333,-1,0.19235,-1,1,-1,0,-1,1,-$
$0.66667, \mathrm{~g}$
$0,0,-1,1,-1,-1,0,0,-1,1,1,-1,-1,-1,-1,1,0,0,-1,-1,-1,1,0,0,1,-$
$1,1,1,1,-1,1,1,0,0, b$
1,0,1,0.06843,1,0.14211,1,0.22108,1, -
$0.125,1,0.39495,1,0.48981,1,0.58986,-$
$0.375,1,1,0,1,0.92001,1,1,1,1,1,1,1,0.25,1,1,1,1, g$
$0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,-1,0,0,1,1,1,-1,1,-$
1,0,0,0,0,0,0,b
1,0,0.64947,-0.07896,0.58264,-0.1438,-0.13129,-
$0.21384,0.29796,0.04403,0.38096,-0.26339,0.28931,-0.31997,0.03459,-$
0.18947,0.20269,-0.29441,0.15196,-0.29052,0.09513,-0.31525,0.06556, -
0.26795,0.03004,-0.25124,-0.00046,-0.2321,-0.02612,-0.21129,-0.04717, -
$0.1895,0.01336,-0.27201, g$
$1,0,0,0,0,0,0,0,0,0,1,-0.33333,0.16667,0.26042,0,0,0,0,0,0,-0.19792$, -
$0.21875,-0.16667,0.90625,-1,0.5,0.04167,0.75,-0.22917,-1,-0.125,-$
0.27083,-0.19792,-0.9375, b
$1,0,1,0.05149,0.99363,0.10123,0.96142,0.14756,0.95513,-$
$0.26496,0.66026,0.54701,0.80426,0.25283,0.73781,0.2738,0.66775,0.28714$
,0.59615,0.29304,0.52494,0.292,0.45582,0.28476,0.39023,0.27226,0.3293,
0.25553,0.27381,0.23568,0.22427,0.21378,0.18086,0.19083,g
$1,0,1,-0.09524,-1,-1,-1,-1,1,0.31746,0.81349,0.7619,-1,-1$, -
$1,1,0.47364,1,1,1,0.68839,-1,-1,-1,0.82937,0.36508,1,1,1,0.50794,-1,-$
$0.3254,-1,0.72831, b$
1,0,0.93669,-0.0019,0.60761,0.43204,0.92314, -
$0.40129,0.93123,0.16828,0.96197,0.09061,0.99676,0.08172,0.91586,0.0509$
$7,0.84628,-0.25324,0.87379,-0.14482,0.84871,0.26133,0.75081$,
$0.03641,0.84547,-0.02589,0.87293,-0.02302,0.98544,0.09385,0.78317$, -
$0.10194,0.85841,-0.14725, \mathrm{~g}$
$1,0,1,-1,1,1,1,1,1,-0.5,1,1,1,1,1,1,0,0,1,1,1,1,1,-1,1,1,1,0.625,1,-$
$0.75,-0.75,1,1,1, b$
$1,0,1,0.23058,1,-0.78509,1,-0.10401,1,0.15414,1,0.2782,0.9812$, -
$0.06861,1,0.0661,0.95802,-0.18954,0.83584$, -
$0.15633,0.974,0.03728,0.99624,0.09242,1,-0.01253,0.96238,-$
$0.04597,0.91165,0.03885,1,-0.13722,0.96523,-0.11717, g$
$1,0,0.36876,-1,-1,-1,-0.07661,1,1,0.95041,0.74597,-0.3871,-1,-$
$0.79313,-0.09677,1,0.48684,0.46502,0.31755,-0.27461,-0.14343,-$
0.20188,-0.11976,0.06895,0.03021,0.06639,0.03443,-0.01186,-0.00403,-
$0.01672,-0.00761,0.00108,0.00015,0.00325, \mathrm{~b}$
1,0,0.79847,0.38265,0.80804,-0.16964,1,-0.07653,0.98151, -
$0.07398,0.70217,0.20663,0.99745,0.02105,0.98214,0.02487,1,-$
$0.13074,0.95663,0.07717,1,0.00191,0.90306,0.30804,1,-0.14541,1,-$
0.00394,0.75638,0.07908,1,-0.1875,1,-0.0574,g
$0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,0,0,1,1,1,-1,1,1,1,0,1,1,1,-$
1,0,0,b
1,0,1,-0.28428,1,-0.25346,0.94623,-0.35094,1,-0.30566,0.92736,-
$0.49057,0.90818,-0.44119,0.75723,-0.58899,0.69748,-0.58019,0.59623$,
$0.57579,0.68459,-0.70975,0.54465,-0.87327,0.49214,-0.73333,0.35504$,
$0.76054,0.26352,-0.78239,0.16604,-0.73145,0.13994,-0.7, \mathrm{~g}$
$1,0,0,0,0,0,0,0,-0.85,-1,0,0,1,-1,0,0,-1,-1,-1,-1,1,-1,-0.6,-1,1,1,-$
$1,-0.2,1,-1,0,1,0,0, b$
1,0,1,0.09091,0.95455,-
$0.09091,0.77273,0,1,0,0.95455,0,1,0.04545,0.90909$, -
$0.04545,1,0,1,0,0.86364,0.09091,0.77273,0.09091,0.90909,0.04545,0.9154$
$1,0.02897,0.95455,0.09091,0.86364,-0.09091,0.86364,0.04545, \mathrm{~g}$
$0,0,0,0,-1,1,1,1,-1,-1,0,0,-1,-1,-1,-0.3125,-1,-1,1,-1,1,-1,0,0,1,-1,-$
$1,-1,0,0,1,-1,0,0, b$
$1,0,0.91176,-0.08824,0.97059,0.17647,0.82353,0.08824,0.91176$,-
0.02941,0.97059, -
$0.17647,0.97059,0.14706,0.94118,0.02941,1,0,1,0,0.76471,0.11765,0.8823$
5,0.02941,0.85294,0.02941,0.92663,0.026,0.94118,-
$0.11765,0.97059,0.05882,0.91176,0.05882, \mathrm{~g}$
$1,0,-1,1,-1,0.15244,0.28354,1,-1,1,-1,-1,1,1,-1,-0.23476,0.28301,-$ $1,1,1,-0.31402,-1,-1,-1,1,-1,-1,-0.03578,1,-1,-1,-0.32317,0.14939,1, b$ $1,0,0.47368,-0.10526,0.83781,0.01756,0.83155,0.02615,0.68421$, -
$0.05263,0.68421,0,0.79856,0.05028,0.78315,0.05756,0.84211,0.47368,1,0$. 05263, 0.7255,0.07631,0.70301,0.08141,0.42105,0.21053, 0.65419, 0.08968,0 . 52632,-0.21053,0.6015,0.09534,0.57418,0.09719,g
$1,0,-0.00641,-0.5,0,0,-0.01923,1,0,0,0,0,0,0,0,0,0,0,0.3141,0.92949,-$
$0.35256,0.74359,-0.34615,-0.80769,0,0,-0.61538,-0.51282,0,0,0,0,0,0, b$ $1,0,1,0.45455,1,0.54545,0.81818,0.63636,1,-0.09091,1,0,0.81818,-$
$0.45455,0.63636,0.27273,1,-0.63636,1,-0.27273,0.90909,-$
0.45455,1,0.0775,1,-
$0.09091,1,0.08867,1,0.36364,1,0.63636,0.72727,0.27273, \mathrm{~g}$
$0,0,-1,-1,1,-1,-1,1,0,0,1,-1,1,-1,0,0,0,0,0,0,-1,1,1,-1,-$
$1,1,1,1,0,0,1,0.5,0,0, b$
$1,0,0.45455,0.09091,0.63636,0.09091,0.27273,0.18182,0.63636,0,0.36364$,
$-0.09091,0.45455,-0.09091,0.48612,-0.01343,0.63636,-$
$0.18182,0.45455,0,0.36364,-0.09091,0.27273,0.18182,0.36364,-$
$0.09091,0.34442,-0.01768,0.27273,0,0.36364,0,0.28985,-0.01832, \mathrm{~g}$
$1,0,-1,-0.59677,0,0,-1,0.64516,-0.87097,1,0,0,0,0,0,0,0,0,0,0,-1,-$
$1,0,0,0.29839,0.23387,1,0.51613,0,0,0,0,0,0, b$
$1,0,1,0.14286,1,0.71429,1,0.71429,1,-0.14286,0.85714,-$
$0.14286,1,0.02534,1,0,0.42857,-0.14286,1,0.03617,1,-$
$0.28571,1,0,0.28571,-0.28571,1,0.04891,1,0.05182,1,0.57143,1,0, \mathrm{~g}$
$0,0,1,1,1,-1,1,1,1,1,1,1,1,-1,1,1,1,-1,1,-1,1,1,1,1,1,-$
1,1,1,1,1,1,1,1,1,b
$1,0,0.87032,0.46972,0.53945,0.82161,0.1038,0.95275,-0.38033,0.87916,-$
$0.73939,0.58226,-0.92099,0.16731,-0.82417,-0.24942,-0.59383,-0.63342$, -
0.24012,-0.82881,0.18823,-0.78699,0.51557,-0.5743,0.69274, -
0.24843,0.69097,0.10484,0.52798,0.39762,0.25974,0.56573, -
0.06739,0.57552,g
$0,0,1,-1,1,1,1,-1,1,1,1,-1,1,-1,1,-1,1,1,1,1,1,1,1,-$
$1,1,1,1,1,1,1,1,1,1,-1, b$
$1,0,0.92657,0.04174,0.89266,0.15766,0.86098,0.19791,0.83675,0.36526,0$. 80619,0.40198,0.76221,0.40552,0.66586,0.4836,0.60101,0.51752,0.53392,0 $.5218,0.48435,0.54212,0.42546,0.55684,0.3334,0.55274,0.26978,0.54214,0$ $.22307,0.53448,0.14312,0.49124,0.11573,0.46571, \mathrm{~g}$
$0,0,1,1,1,-1,1,-1,1,1,0,0,1,-1,0,0,0,0,0,0,-1,1,1,1,0,0,1,1,0,0,-1,-$ 1,0,0,b
$1,0,0.93537,0.13645,0.93716,0.25359,0.85705,0.38779,0.79039,0.47127,0$.
$72352,0.59942,0.6526,0.75,0.5083,0.73586,0.41629,0.82742,0.25539,0.859$
52,0.13712,0.85615,0.00494,0.88869,-0.07361,0.7978,-0.20995,0.78004, -
$0.33169,0.71454,-0.38532,0.64363,-0.47419,0.55835, \mathrm{~g}$
$0,0,1,-1,-1,1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,1,-$
$1,1,-1,-1,1,-1,1, b$
$1,0,0.80627,0.13069,0.73061,0.24323,0.64615,0.19038,0.36923,0.45577,0$.
44793,0.46439,0.25,0.57308,0.25192,0.37115,0.15215,0.51877,-
0.09808,0.575,-0.03462,0.42885,-0.08856,0.44424,-0.14943,0.40006,-
$0.1994,0.34976,-0.23832,0.29541,-0.26634,0.23896,-0.23846,0.31154, \mathrm{~g}$ $0,0,1,-1,1,1,1,-1,1,1,1,-1,1,1,1,-1,1,-1,1,1,1,1,1,-1,1,-1,1,-$
$1,1,1,1,-1,1,1, b$
$1,0,0.97467,0.13082,0.9412,0.20036,0.88783,0.32248,0.89009,0.32711,0.8$ $555,0.45217,0.72298,0.52284,0.69946,0.5882,0.58548,0.66893,0.48869,0.7$ 0398,0.44245,0.68159,0.35289,0.75622,0.26832,0.7621,0.16813,0.78541,0. 07497,0.80439,-0.02962,0.77702,-0.10289,0.74242,g
$0,0,0,0,1,1,0,0,1,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-$
1,1,0,0,b
$1,0,0.92308,0.15451,0.86399,0.29757,0.72582,0.3679,0.70588,0.5683,0.57$
$449,0.62719,0.4327,0.74676,0.31705,0.67697,0.19128,0.76818,0.04686,0.7$ 6171,-0.12064,0.76969,-0.18479,0.71327,-0.29291,0.65708,
$0.38798,0.58553,-0.46799,0.50131,-0.53146,0.40732,-0.56231,0.35095, \mathrm{~g}$
$0,0,0,0,1,1,1,1,0,0,0,0,-1,-1,0,0,-1,-1,0,0,0,0,1,1,0,0,1,1,0,0,-$
1, 1, 0, 0, b
$1,0,0.88804,0.38138,0.65926,0.69431,0.29148,0.87892,-0.06726,0.90135$, -
$0.39597,0.80441,-0.64574,0.56502,-0.8296,0.26906,-0.7894,-0.08205,-$
$0.6278,-0.30942,-0.46637,-0.55605,-0.16449,-0.64338,0.09562$, -
$0.61055,0.30406,-0.48392,0.43227,-0.29838,0.47029$, -
$0.09461,0.42152,0.12556, \mathrm{~g}$
$0,0,1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,1,1,1,-1,1,-1,1,-1,1,-1,1,1,1,-$
$1,1,1,1,1, b$
1,0,0.73523,-
$0.38293,0.80151,0.10278,0.78826,0.15266,0.5558,0.05252,1,0.21225,0.719$
47,0.28954,0.68798,0.32925,0.49672,0.17287,0.64333,-
$0.02845,0.57399,0.42528,0.5312,0.44872,0.9453,0.57549,0.44174,0.482,0$.
12473,1,0.3507,0.49721,0.30588,0.49831,g
$0,1,1,0,0,0,0,0,0, b$ 1,0,0.94649,0.00892,0.97287, -
$0.0026,0.98922,0.00372,0.95801,0.01598,0.94054,0.0353,0.97213,0.04719$, $0.98625,0.01858,0.94277,0.07135,0.98551$,
0.00706,0.9777,0.0498,0.96358,0.07098,0.93274,0.08101,0.95243,0.04356, $0.97473,0.00818,0.97845,0.07061,1,-0.0026, \mathrm{~g}$
$0,0,1,1,-1,-1,-1,-1,0,0,0,0,-1,-1,0,0,0,0,0,0,-1,1,1,1,0,0,1,-1,0,0,-$
$1,-1,-1,-1, b$
1,0,0.50466, -
$0.169,0.71442,0.01513,0.71063,0.02258,0.68065,0.01282,0.34615,0.05594$,
$0.6905,0.04393,0.68101,0.05058,0.67023,0.05692,0.63403,-$
$0.04662,0.64503,0.06856,0.63077,0.07381,0.84033,0.18065,0.59935,0.0830$
$4,0.38228,0.0676,0.56466,0.09046,0.54632,0.09346, \mathrm{~g}$
1,0,0.68729,1,0.91973, -
$0.76087,0.81773,0.04348,0.76087,0.10702,0.86789,0.73746,0.70067,0.1822$
7,0.7592,0.13712,0.93478,-
$0.25084,0.70736,0.18729,0.64883,0.24582,0.60201,0.77425,1,-$
$0.53846,0.89262,0.22216,0.7107,0.53846,1,-0.06522,0.56522,0.23913, b$
1,0,0.76296,-0.07778,1,-0.2963,1,-0.85741,0.8,0.06111,0.45556,-
$0.42778,1,-0.12581,1,-0.83519,0.49259,0.01852,0.82222$, -
$0.05926,0.98215,-0.19938,1,0.22037,0.6963,-0.26481,0.92148$,-
$0.24549,0.78889,0.02037,0.87492,-0.27105,1,-0.57037, \mathrm{~g}$
$1,0,0.38521,0.15564,0.41245,0.07393,0.26459,0.24125,0.23346,0.1323,0.1$ 9455,0.25292,0.24514,0.36965,0.08949,0.22957, -
$0.03891,0.36965,0.05058,0.24903,0.24903,0.09728,0.07782,0.29961,-$
$0.02494,0.28482,-0.06024,0.26256,-0.14786,0.14786,-0.09339,0.31128$, -
$0.19066,0.28794$, b
$1,0,0.5754,-0.03175,0.75198,-0.05357,0.61508,-$
$0.0119,0.53968,0.03373,0.61706,0.09921,0.59127$, -
$0.02381,0.62698,0.0119,0.70833,0.02579,0.60317,0.01587,0.47817,-$
$0.02778,0.59127,0.0377,0.5,0.03968,0.61291,-0.01237,0.61706,-$
0.13492,0.68849,-0.01389,0.625,-0.03175,g
$1,0,0.06404,-0.15271,-0.04433,0.05911,0.08374,-0.02463,-$
0.01478,0.18719,0.06404,0,0.12315,-0.09852,0.05911,0,0.0197,-0.02956,-
0.12808, -
0.2069,0.06897,0.01478,0.06897,0.02956,0.07882,0.16256,0.28079,-
0.04926,-0.05911,-0.0936,0.04433,0.05419,0.07389,-0.10837,b
$1,0,0.61857,0.1085,0.70694,-$
$0.06935,0.70358,0.01678,0.74273,0.00224,0.71029,0.15772,0.71588$, -
$0.00224,0.79754,0.066,0.83669,-0.16555,0.6868,-0.0906,0.62528,-$
$0.01342,0.60962,0.11745,0.71253,-0.09508,0.69845$,
$0.01673,0.63311,0.0481,0.78859,-0.05145,0.65213,-0.04698, \mathrm{~g}$
$1,0,0.25316,0.35949,0,0,-0.2962,-1,0,0,0.07595,-$
$0.07342,0,0,0,0,0,0,0,0,0.00759,0.68101,-0.2,0.33671,-$
$0.1038,0.35696,0.0557,-1,0,0,0.06329,-1,0,0, b$
$1,0,0.88103,-0.00857,0.89818,-0.02465,0.94105,-0.01822,0.89175,-$
$0.12755,0.82208,-0.10932,0.88853,0.01179,0.90782,-0.13719,0.87138$,-
$0.06109,0.90782,-0.02358,0.87996,-0.14577,0.82851,-0.12433,0.90139$,
$0.19507,0.88245,-0.14903,0.84352,-0.12862,0.88424,-0.18542,0.91747$, -
$0.16827, \mathrm{~g}$
1,0,0.42708,-
$0.5,0,0,0,0,0.46458,0.51042,0.58958,0.02083,0,0,0,0,0.16458,-$
$0.45417,0.59167,-0.18333,0,0,0,0,0.9875,-0.40833,-1,-1,-0.27917,-$
$0.75625,0,0,0,0, b$
$1,0,0.88853,0.01631,0.92007,0.01305,0.92442,0.01359,0.89179$,-
0.10223,0.90103,-0.08428,0.9304,-0.01033,0.93094,-0.08918,0.86025,
$0.05057,0.89451,-0.04024,0.88418,-0.12126,0.88907,-0.11909,0.8298,-$
$0.14138,0.86453,-0.11808,0.85536,-0.13051,0.83524,-0.12452,0.86786$,
$0.12235, \mathrm{~g}$
$1,0,0,0,1,0.12889,0.88444,-0.02,0,0,1,-0.42444,1,0.19556,1,-$
$0.05333,1,-0.81556,0,0,1,-0.04,1,-0.18667,0,0,1,-$
1,0,0,1,0.11778,0.90667,-0.09556,b
$1,0,0.81143,0.03714,0.85143,-0.00143,0.79,0.00714,0.79571$, -
$0.04286,0.87571,0,0.85571,-0.06714,0.86429,0.00286,0.82857$,-
$0.05429,0.81,-0.11857,0.76857,-0.08429,0.84286,-0.05,0.77,-$
$0.06857,0.81598,-0.08669,0.82571,-0.10429,0.81429,-0.05,0.82143,-$
0.15143 , g
$1,0,0,0,0,0,0,0,0,0,0,0,-$
$1,1,1,0.55172,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0, b$
1,0,0.4987,0.01818,0.43117,-0.0961,0.50649,-
0.04156,0.5013,0.0961,0.44675,0.05974,0.55844,-0.11948,0.51688,-
0.03636,0.52727,-0.05974,0.55325,-0.01039,0.48571,-0.03377,0.49091, -
$0.01039,0.59221,0,0.53215,-0.0328,0.43117,0.03377,0.54545,-$
$0.05455,0.58961,-0.08571, g$
$0,1,-1,0,0,0,0,0,0, b$ $1,0,1,0.5,1,0.25,0.25,1,0.16851,0.9118,-0.13336,0.80454,-$
$0.34107,0.60793,-0.4382,0.37856,-0.43663,0.16709,-0.36676,0.00678$,
$0.26477,-0.09025,-0.16178,-0.12964,-0.07782,-0.12744,-0.02089,-$
$0.10242,0.01033,-0.07036,0.02224,-0.04142,0.02249,-0.02017, \mathrm{~g}$
$1,0,0,0,0,0,1,1,-1,-1,0,0,1,-0.11111,0,0,0,0,-1,1,1,1,1,-1,0,0,1,-$
1,0,0,0,0,1,1,b
$1,0,0.87048,0.38027,0.64099,0.69212,0.31347,0.86625,-0.03933,0.9074$, -
$0.42173,0.79346,-0.70561,0.5156,-0.81049,0.22735,-0.81136,-0.12539,-$
$0.67474,-0.38102,-0.38334,-0.62861,-0.13013,-0.70762,0.15552$,-
$0.66421,0.38544,-0.51568,0.52573,-0.29897,0.56239$, -
0.05938,0.5146,0.16645,g
$1,0,0,0,0,0,0,0,-1,1,0,0,1,0.37333,-0.12,-0.12,0,0,-1,-1,0,0,1,-$
$1,0,0,1,0.22667,0,0,0,0,0,0, b$
$1,0,0.88179,0.43491,0.59573,0.77655,0.19672,0.94537,-0.24103,0.92544,-$
$0.62526,0.71257,-0.86443,0.33652,-0.92384,-0.05338,-0.77356,-0.44707$, -
$0.4695,-0.73285,-0.10237,-0.82217,0.26384,-0.7757,0.55984$, -
0.5591,0.72147,-
$0.24433,0.72478,0.09599,0.58137,0.38915,0.34749,0.57656, \mathrm{~g}$
$1,0,0.32834,0.0252,0.15236,0.21278,0.14919,0.74003,-0.25706,0.92324,-$
$0.10312,0.1938,-0.61352,0.25786,-0.94053,-0.05409,-0.13117,-0.14329,-$
$0.30315,-0.44615,-0.11409,-0.85597,0.02668,-0.22786,0.27942$,
$0.06295,0.33737,-0.11876,0.27657$,
0.11409,0.15078,0.13296,0.12197,0.20468,g
$1,0,0.83427,0.39121,0.5404,0.78579,0.12326,0.89402,-0.33221,0.83578$, -
0.70086,0.59564,-0.86622,0.21909,-0.84442,-0.24164,-0.59714,-0.61894, -
$0.19354,-0.87787,0.12439,-0.89064,0.51109,-0.72454,0.79143$,-
0.27734,0.83008,0.08718,0.66592,0.49079,0.37542,0.70011, -
0.03983,0.79444,g

1,0,0.62335,-0.0349,0.59085,0.00481,0.60409,-
$0.07461,0.63177,0.00963,0.62455,-0.07461,0.67028,0.0722,0.62936$,
$0.08424,0.67509,0.09146,0.67148,0,0.58965,0.10108,0.5006,0.03129,0.659$
$45,0.14079,0.60463,0.02019,0.51384,0.04452,0.61733,-0.00963,0.61372$, -
0.09146 , g

1,0,0.74449,-
$0.0239,0.70772,0.03309,0.72243,0.16912,0.79228,0.07721,0.81434,0.43934$, 0.63787,0.00551,0.70772,0.21691,1,0.06066,0.61029,0.05147,0.67463,0.0 4228,0.52022,-0.25,0.72978,
$0.15809,0.61727,0.07124,0.30882,0.0864,0.55916,0.07458,0.60294,0.21691$, 9
$1,0,0.61538,0.18923,0.78157,0.0178,0.77486,0.02647,0.65077,-$
$0.10308,0.77538,0.08,0.73961,0.0506,0.72322,0.05776,0.68615,-$
$0.08923,0.61692,0.16308,0.66233,0.07573,0.63878,0.08041,0.60154$,
$0.07231,0.58803,0.08767,0.55077,0.25692,0.53389,0.09207,0.50609,0.0932$ 2,g
$1,0,0.68317,0.05375,0.84803,0.00202,0.84341,0.00301,0.843,0.09901,0.75$ 813,0.04102,0.81892,0.00585,0.80738,0.00673,0.80622,-0.12447,0.77935,$0.03536,0.76365,0.00909,0.74635,0.00978,0.79632$, -
$0.04243,0.70824,0.01096,0.62235,0.11598,0.66624,0.0119,0.64407,0.01227$, 9
$1,0,0.5,0,0.38696,0.10435,0.4913,0.06522,0.46957,-0.03913,0.35652,-$
$0.12609,0.45652,0.04783,0.50435,0.02609,0.35652,0.19565,0.42174,0.1478$ 3,0.42174,-0.02609,0.32174,-0.11304,0.47391,
$0.0087,0.41789,0.06908,0.38696,0.03913,0.35217,0.14783,0.44783,0.17391$, 9
$1,0,0.7983,0.09417,0.78129,0.20656,0.71628,0.28068,0.6932,0.41252,0.65$ 917,0.50122,0.57898,0.60814,0.4921,0.58445,0.33354,0.67861,0.29587,0.6 3548,0.09599,0.68104,0.02066,0.72236,-0.08748, 0.63183,-
$0.11925,0.60696,-0.18226,0.56015,-0.25516,0.51701,-0.27339,0.42467, \mathrm{~g}$ $1,0,1,0.09802,1,0.25101,0.9839,0.33044,0.80365,0.5302,0.74977,0.60297$, $0.56937,0.71942,0.55311,0.74079,0.29452,0.82193,0.21137,0.79777,0.0970$ 9,0.82162,-0.01734,0.7987,-0.15144,0.75596,-0.22839,0.69187,-
$0.31713,0.60948,-0.40291,0.54522,-0.42815,0.44534, \mathrm{~g}$
$1,0,0.8941,0.13425,0.87001,0.31543,0.78896,0.43388,0.63388,0.59975,0.5$ 4003, 0.71016, 0.39699, 0.76161, 0.24266, 0.79523, 0.09134, 0.79598, -
$0.09159,0.76261,-0.20201,0.66926,-0.30263,0.6261,-0.40552,0.50489$, -$0.46215,0.40753,-0.50314,0.27252,-0.52823,0.19172,-0.48808,0.05972, \mathrm{~g}$ $1,0,0.94631,0.17498,0.90946,0.33143,0.85096,0.4996,0.73678,0.63842,0.5$ 9215,0.73838,0.48698,0.83614,0.30459,0.90665,0.17959,0.93429, -
$0.00701,0.93109,-0.1888,0.89383,-0.33023,0.82492,-0.46534,0.76482$, -
$0.58563,0.66335,-0.67929,0.52564,-0.75321,0.42488,-0.8121,0.26092, \mathrm{~g}$
$1,0,0.91767,0.18198,0.8609,0.35543,0.72873,0.45747,0.60425,0.69865,0.5$ 0376,0.74922,0.361,0.81795,0.15664,0.83558,0.00396,0.8521, -
$0.1639,0.77853,-0.35996,0.76193,-0.43087,0.65385,-0.5314,0.53886$,-
$0.60328,0.40972,-0.64511,0.27338,-0.6571,0.13667,-0.64056,0.05394, \mathrm{~g}$ $1,0,0.76627,0.21106,0.63935,0.38112,0.48409,0.525,0.15,0.22273,0.13753$, 0.59565,-0.07727,0.44545,0,0.48636,-0.27491,0.42014,
$0.56136,0.36818,-0.36591,0.18864,-0.40533,0.07588,-0.38483,-0.03229$, -
0.33942,-0.12486,-0.2754,-0.19714,-0.19962,-0.24648,-0.11894,-
0.27218,g

1,0,0.5894, -
$0.60927,0.8543,0.55298,0.81126,0.07285,0.56623,0.16225,0.32781,0.24172$, 0.50331,0.12252,0.63907,0.19868,0.71854,0.42715,0.54305,0.13907,0.652 $32,0.27815,0.68874,0.07285,0.51872,0.26653,0.49013,0.27687,0.46216,0.2$ 8574,0.43484,0.29324,0.40821,0.29942,g
1,0,1,0.11385,0.70019, -
$0.12144,0.81594,0.09677,0.71157,0.01139,0.56167$,
$0.0778,0.6907,0.12524,0.58634,0.03985,0.53131,-$
$0.03416,0.6945,0.16888,0.72676,0.07211,0.32068,0.05882,0.53321,0.37381$,0.4909,0.17951,0.1518,0.32448,0.44141,0.18897,0.56167,0.1518,g
$1,0,0.84843,0.06794,0.80562,-0.02299,0.77031,-0.03299,0.66725,-$
$0.0662,0.59582,-0.07666,0.6726,-0.05771,0.6426$,
$0.06438,0.39199,0.0453,0.71254,0.01394,0.5597,-0.08039,0.5343,-$
0.08453,0.47038,-0.22822,0.48659,-0.09128,0.52613,-0.08537,0.44277,-
0.09621,0.42223,-0.09808,g
$1,0,1,0.08013,0.96775,-0.00482,0.96683,-0.00722,0.8798$,-
$0.03923,1,0.01419,0.96186,-0.01436,0.95947$, -
$0.01671,0.98497,0.01002,0.91152,-0.08848,0.95016,-0.02364,0.94636$,-
$0.02591,0.98164,0.02003,0.93772,-0.03034,1,-0.05843,0.92774$, -
0.03464,0.92226,-0.03673,g
$1,0,0.47938,-0.12371,0.42784,-0.12371,0.70103$, -
$0.39175,0.73196,0.07216,0.26289,-0.21649,0.49485,0.15979,0.45361$,
0.11856,0.42268,0.06186,0.5,-
0.2732,0.54639,0.18557,0.42268,0.08247,0.70619,0.19588,0.53396,-
$0.12447,0.15464,-0.26289,0.47423,0.04124,0.45361,-0.51546, \mathrm{~g}$ $1,0,0.6351,-0.04388,0.7653,0.02968,0.61432,0.36028,0.65358$,-0.00462,0.64203,0.08314,0.79446,-
$0.43418,0.72517,0.54965,0.59584,0.13857,0.6351,0.2194,0.63279,-$
$0.25404,0.70951,0.15359,0.64665,0.23095,0.68775,0.17704,0.61663,0.0762$
1,0.66316,0.19841,0.69053,0.36721,g
1,0,0.50112,-
$0.03596,0.61124,0.01348,0.58876,0.01573,0.58876,0.02472,0.66742$, -
$0.00449,0.71685,-0.04719,0.66517,0.00899,0.57303,0.02472,0.64719$, -
$0.07416,0.56854,0.14157,0.57528,-$
$0.03596,0.46517,0.04944,0.56588,0.00824,0.4764$, -
$0.03596,0.54607,0.10562,0.60674,-0.0809, \mathrm{~g}$
$1,0,0.71521,-0.00647,0.66667,-0.04207,0.63107,-$
$0.05178,0.77994,0.08091,0.67314,0.09709,0.64725,0.15858,0.60194$, -
$0.01942,0.54369,-0.04531,0.46926$,
$0.10032,0.64725,0.14887,0.39159,0.21683,0.52427$, -
$0.05502,0.45105,0.0004,0.31392,-0.06796,0.49191,-0.1068,0.30421$, -
0.05178 , g
$1,0,0.68148,0.1037,0.77037,0.03457,0.65185,0.08148,0.60988,-$
$0.00494,0.79012,0.11852,0.59753,0.04938,0.62469,0.0963,0.78272,-$
$0.17531,0.73827,-0.10864,0.48642,0.00988,0.60988,0.08148,0.66667$,
$0.1284,0.63773,-0.02451,0.76543,0.02222,0.61235,-0.0716,0.51358,-$
$0.04691, \mathrm{~g}$
1,0,0.60678,-0.02712,0.67119,0.04068,0.52881, -
$0.04407,0.50508,0.03729,0.70508,-0.07797,0.57966,-$
$0.02034,0.5322,0.07797,0.64068,0.11864,0.56949,-$
$0.02373,0.5322,0.00678,0.71525,-0.0339,0.52881,-$
$0.0339,0.57262,0.0075,0.58644,-0.00339,0.58983,-$
0.02712,0.50169,0.0678,g
$1,0,0.49515,0.09709,0.29612,0.05825,0.34951,0,0.57282$, -
$0.02427,0.58252,0.02427,0.33495,0.04854,0.52427,0.00485,0.47087$, -
$0.1068,0.43204,0.00485,0.34951,0.05825,0.18932,0.25728,0.31068$, -
$0.15049,0.36547,0.03815,0.3932,0.17476,0.26214,0,0.37379,-0.01942, \mathrm{~g}$
$1,0,0.98822,0.02187,0.93102,0.341,0.83904,0.35222,0.74706,0.48906,0.73$
584,0.51879,0.55076,0.60179,0.4313,0.66237,0.318,0.70443,0.28379, 0.688
$73,0.07515,0.73696,0.06338,0.71284,-0.16489,0.69714,-0.16556,0.6051,-$
$0.16209,0.55805,-0.34717,0.44195,-0.33483,0.37465, \mathrm{~g}$
$1,0,0.97905,0.1581,0.90112,0.35237,0.82039,0.48561,0.7176,0.64888,0.58$
827,0.73743,0.40349,0.83156,0.2514,0.84804,0.047,0.85475,-
$0.12193,0.79749,-0.2618,0.80754,-0.37835,0.71676,-0.51034,0.58324$, -
$0.57587,0.4604,-0.61899,0.30796,-0.65754,0.18345,-0.64134,0.02968, \mathrm{~g}$ $1,0,0.99701,0.21677,0.91966,0.4703,0.76902,0.62415,0.53312,0.7812,0.36$ $774,0.88291,0.10107,0.83312,-0.06827,0.89274,-0.28269,0.72073,-$
$0.43707,0.61688,-0.55769,0.4812,-0.65,0.35534,-0.64658,0.15908,-$
0.66651,0.02277,-0.64872,-0.13462,-0.54615,-0.22949,-0.47201,-
0.35032 , g
$1,0,0.94331,0.19959,0.96132,0.40803,0.80514,0.56569,0.56687,0.7083,0.4$ 1836,0.8323,0.14939,0.89489,0.05167,0.93682,-0.24742,0.83939,-$0.42811,0.75554,-0.50251,0.62563,-0.65515,0.50428,-0.68851,0.30912$, -0.77097,0.15619,-0.75406,-0.04399,-0.75199,-0.17921,-0.66932,0.34367,g
$1,0,0.93972,0.28082,0.80486,0.52821,0.58167,0.73151,0.34961,0.80511,0$. 10797,0.90403,-0.20015,0.89335,-0.3973,0.82163,-0.58835,0.62867, -
$0.76305,0.40368,-0.81262,0.18888,-0.81317,-0.04284,-0.75273,-0.26883$, -
0.63237,-0.46438,-0.46422,-0.61446,-0.26389,-0.70835,-0.08937,-
0.71273 , g
$1,0,0.89835,0.35157,0.67333,0.62233,0.43898,0.94353,-0.03643,0.8051,-$
$0.22838,0.75334,-0.25137,0.48816,-0.57377,0.28415,-0.6675,0.10591,-$
$0.47359,-0.06193,-0.81056,-0.06011,-0.33197,-0.47592,-0.12897,-$
$0.5362,0.07158,-0.51925,0.24321,-0.43478,0.36586,-$
$0.30057,0.42805,0.13297, \mathrm{~g}$
$1,0,0.29073,0.10025,0.23308,0.17293,0.03759,0.34336,0.1203,0.26316,0.0$ 6266,0.21303,-0.04725,0.12767,-0.06333,0.07907,-0.06328,0.04097, -
0.05431,0.01408,-0.04166,-0.0028,-0.02876,-0.01176,-0.01755,-0.01505,-
$0.00886,-0.01475,-0.0028,-0.0125,0.00096,-0.00948,0.0029,-0.00647, \mathrm{~g}$
1,0,0.58459,-0.35526,1,0.35338,0.75376, -
0.00564,0.82519,0.19361,0.50188,
0.27632,0.65977,0.06391,0.69737,0.14662,0.72368,-
$0.42669,0.76128,0.04511,0.66917,0.20489,0.84774,-0.40977,0.6485,-$
0.04699,0.56836,-0.10571,0.5282,-0.13346,0.15602,-0.12218,0.44767,
0.10309 , g
$1,0,0.83609,0.13215,0.72171,0.06059,0.65829,0.08315,0.23888,0.12961,0$.
43837,0.2033,0.49418,0.12686,0.44747,0.13507,0.29352,0.02922,0.48158,0
$.15756,0.32835,0.14616,0.29495,0.14638,0.26436,0.1453,0.23641,0.14314$, 0.26429,0.16137,0.18767,0.13632,0.16655,0.13198,g
$1,0,0.9408,0.11933,0.85738,0.01038,0.85124,0.01546,0.76966$,-
$0.00278,0.84459,0.10916,0.83289,0.03027,0.8268,0.03506,0.74838,0.01943$
, 0. 80019, 0.02405,0.80862,0.04901,0.80259,0.05352,0.77336,0.0222,0.7905
8,0.06235,0.85939,0.09251,0.77863,0.0709,0.77269,0.07508,g
$1,0,0.87111,0.04326,0.79946,0.18297,0.99009,0.29292,0.89455$,
$0.08337,0.88598,-0.02028,0.90446,-0.26724,0.8941,0.19964,0.88644$, -
$0.04642,0.84452,-0.00991,0.97882,-0.34024,0.78954,-0.25101,0.86661$, -
0.09193,0.85967,-0.02908, 0.78774, -
$0.04101,0.75935,0.21812,0.88238,0.09193, \mathrm{~g}$
$1,0,0.74916,0.02549,0.98994,0.09792,0.75855,0.12877,0.74313,-$
$0.09188,0.95842,0.02482,0.97921,-$
$0.00469,0.9611,0.10195,0.91482,0.03756,0.71026,0.02683,0.81221,-$
$0.08048,1,0,0.71764,-0.01207,0.82271,0.02552,0.72435$, -
$0.01073,0.90409,0.11066,0.72837,0.0275, \mathrm{~g}$
$1,0,0.47337,0.19527,0.06213,-0.18343,0.62316,0.01006,0.45562$,-
$0.04438,0.56509,0.01775,0.44675,0.27515,0.71598$,
$0.03846,0.55621,0.12426,0.4142,0.11538,0.52767,0.02842,0.51183,-$
$0.10651,0.47929,-0.02367,0.46514,0.03259,0.5355,0.25148,0.31953,-$
0.14497,0.34615,-0.00296, g
$1,0,0.59887,0.14689,0.69868,-0.13936,0.85122$,
$0.13936,0.80979,0.02448,0.50471,0.02825,0.6742,-0.0452,0.80791$, -
0.13748,0.51412,-0.24482,0.81544,-0.14313,0.70245,-
$0.00377,0.33333,0.06215,0.56121,-0.33145,0.61444,-0.16837,0.52731$,
$0.02072,0.53861,-0.31262,0.6742,-0.22034, \mathrm{~g}$
$1,0,0.84713,-0.03397,0.86412,-0.08493,0.81953,0,0.73673,-$
$0.07643,0.71975,-0.13588,0.74947,-0.11677,0.77495,-0.18684,0.78132$, -
0.21231,0.61996,-0.10191,0.79193,-0.15711,0.89384,-0.03397,0.84926,-
$0.26115,0.74115,-0.23312,0.66242,-0.22293,0.72611,-0.37792,0.65817$, -
0.24841,g
$1,0,0.87772,-0.08152,0.83424,0.07337,0.84783,0.04076,0.77174,-$
0.02174,0.77174,-0.05707,0.82337,-0.10598,0.67935,-0.00543,0.88043,-
$0.20924,0.83424,0.03261,0.86413,-0.05978,0.97283,-0.27989,0.85054$, -
$0.1875,0.83705,-0.10211,0.8587,-0.03261,0.78533,-0.1087,0.79076$, -
0.00543 , g
$1,0,0.74704,-0.13241,0.53755,0.16996,0.72727,0.09486,0.69565,-$
$0.11067,0.66798,-0.23518,0.87945,-0.1917,0.73715,0.0415,0.63043,-$
$0.00395,0.63636,-0.11858,0.79249,-0.25296,0.66403,-0.28656,0.67194,-$
$0.10474,0.61847,-0.12041,0.60079,-0.20949,0.37549,0.06917,0.61067$, -
0.01383 , g

1,0,0.46785,0.11308,0.5898,0.00665,0.55432,0.06874,0.47894,-
$0.13969,0.52993,0.0133,0.63858,-0.16186,0.67849,-0.03326,0.54545$, -
$0.13525,0.52993,-0.04656,0.47894,-0.19512,0.50776,-0.13525,0.41463$,
$0.20177,0.5393,-0.11455,0.59867,-0.02882,0.53659,-0.11752,0.56319,-$
$0.04435, \mathrm{~g}$
$1,0,0.88116,0.27475,0.72125,0.42881,0.61559,0.63662,0.38825,0.90502,0$. 09831,0.96128,-0.20097,0.892,-0.35737,0.775,-0.65114,0.6221, -
0.78768,0.45535,-0.81856,0.19095,-0.83943,-0.08079,-0.78334,-0.26356,-
$0.67557,-0.45511,-0.54732,-0.60858,-0.30512,-0.667,-0.19312,-0.75597, \mathrm{~g}$
$1,0,0.93147,0.29282,0.79917,0.55756,0.59952,0.71596,0.26203,0.92651,0$.
04636,0.96748,-0.23237,0.9513,-0.55926,0.81018,-0.73329,0.62385,-
$0.90995,0.362,-0.92254,0.0604,-0.93618,-0.19838,-0.83192,-0.46906,-$
$0.65165,-0.69556,-0.41223,-0.85725,-0.1359,-0.93953,0.10007,-0.94823, \mathrm{~g}$
$1,0,0.88241,0.30634,0.73232,0.57816,0.34109,0.58527,0.05717,1,-$
$0.09238,0.92118,-0.62403,0.71996,-0.69767,0.32558,-0.81422,0.41195$,
$1,-0.00775,-0.78973,-0.41085,-0.76901,-0.45478,-0.57242,-0.67605,-$
$0.3161,-0.81876,-0.02979,-0.86841,0.25392,-0.82127,0.00194,-0.81686, \mathrm{~g}$
$1,0,0.83479,0.28993,0.69256,0.47702,0.49234,0.68381,0.21991,0.86761$, -
$0.08096,0.85011,-0.35558,0.77681,-0.52735,0.58425,-0.7035,0.31291$, -
$0.75821,0.03939,-0.71225,-0.15317,-0.58315,-0.39168,-0.37199,-$
$0.52954,-0.1695,-0.60863,0.08425,-0.61488,0.25164,-0.48468,0.40591$, -
0.35339 , g
$1,0,0.9287,0.33164,0.76168,0.62349,0.49305,0.84266,0.21592,0.95193,-$
$0.13956,0.96167,-0.47202,0.8359,-0.70747,0.6549,-0.87474,0.3675,-$
0.91814,0.05595,-0.89824,-0.26173,-0.73969,-0.54069,-0.50757,-
$0.74735,-0.22323,-0.86122,0.0781,-0.87159,0.36021,-0.78057,0.59407$, -
0.6027, g
$1,0,0.83367,0.31456,0.65541,0.57671,0.34962,0.70677,0.17293,0.78947$,-
$0.18976,0.79886,-0.41729,0.66541,-0.68421,0.47744,-0.74725,0.19492$, -
$0.7218,-0.04887,-0.6203,-0.28195,-0.49165,-0.53463,-0.26577,-0.66014,-$
$0.0153,-0.69706,0.22708,-0.64428,0.431,-0.51206,0.64662,-0.30075, \mathrm{~g}$ 1,0,0.98455,-0.02736,0.98058,-0.04104,1,-
$0.07635,0.9872,0.01456,0.95278,-0.02604,0.985,-0.07458,0.99382,-$
$0.07149,0.97396,-0.09532,0.97264,-0.12224,0.99294,-0.05252,0.95278$,
0.08914,0.97352,-0.08341,0.96653,-0.12912,0.93469,-0.14916,0.97132,-
0.15755,0.96778,-0.188,g

1,0,0.94052,-0.01531,0.9417,0.01001,0.94994,-0.01472,0.95878,-
0.0106,0.94641,-0.0371,0.97173,-0.01767,0.97055,-0.03887,0.95465,-
$0.04064,0.9523,-0.04711,0.94229,-0.02179,0.92815,-0.04417,0.92049$,
$0.04476,0.92695,-0.05827,0.90342,-0.07479,0.91991,-0.07244,0.92049$, -
0.0742 , g
$1,0,0.97032,-0.14384,0.91324,-0.00228,0.96575,-$
$0.17123,0.9863,0.18265,0.91781,0.00228,0.93607,-0.08447,0.91324$, -
$0.00228,0.86758,-0.08676,0.97032,-0.21233,1,0.10274,0.92009,-$
$0.05251,0.92466,0.06849,0.94043,-0.09252,0.97032,-0.20091,0.85388$,
0.08676,0.96575,-0.21918,g
$1,0,0.52542,-0.0339,0.94915,0.08475,0.52542,-0.16949,0.30508$,-
$0.01695,0.50847,-0.13559,0.64407,0.28814,0.83051,-$
$0.35593,0.54237,0.01695,0.55932,0.0339,0.59322,0.30508,0.86441,0.05085$, 0.40678,0.15254,0.67287,-0.00266,0.66102,-0.0339,0.83051, -
0.15254,0.76271,-0.10169, g

1,0,0.33333,-
$0.25,0.44444,0.22222,0.38889,0.16667,0.41667,0.13889,0.5,-$
$0.11111,0.54911,-0.08443,0.58333,0.33333,0.55556,0.02778,0.25,-$
$0.19444,0.47222,-0.05556,0.52778,-0.02778,0.38889,0.08333,0.41543$,
0.14256,0.19444,-0.13889,0.36924,-0.14809,0.08333,-0.5,g
$1,0,0.51207,1,1,0.5381,0.71178,0.80833,0.45622,0.46427,0.33081,1,0.212$
$49,1,-0.17416,1,-0.33081,0.98722,-0.61382,1,-0.52674,0.71699,-$
0.885,0.47894,-1,0.35175,-1,0.09569,-1,-0.16713,-1,-0.42226,-0.91903,-
0.65557 , g
$1,0,0.75564,0.49638,0.8355,0.54301,0.54916,0.72063,0.35225,0.70792,0.1$ 3469,0.94749,-0.09818,0.93778,-0.37604,0.82223,-0.52742,0.71161, -$0.68358,0.67989,-0.70163,0.24956,-0.79147,0.02995,-0.98988,-0.29099$, $0.70352,-0.32792,-0.63312,-0.19185,-0.34131,-0.60454,-0.19609,-$
0.62956 , g
$1,0,0.83789,0.42904,0.72113,0.58385,0.45625,0.78115,0.1647,0.82732$, -
$0.13012,0.86947,-0.46177,0.78497,-0.59435,0.5207,-0.7847,0.26529$, -
$0.84014,0.03928,-0.62041,-0.31351,-0.47412,-0.48905,-0.37298,-$
$0.67796,-0.05054,-0.62691,0.1469,-0.45911,0.37093,-0.39167,0.48319$, -
0.24313, g
$1,0,0.93658,0.35107,0.75254,0.6564,0.45571,0.88576,0.15323,0.95776$, -
$0.21775,0.96301,-0.56535,0.83397,-0.78751,0.58045,-0.93104,0.2602,-$
0.93641,-0.06418,-0.87028,-0.40949,-0.65079,-0.67464,-0.36799,-
$0.84951,-0.04578,-0.91221,0.2733,-0.85762,0.54827,-0.69613,0.74828$,-
0.44173 , g
$1,0,0.92436,0.36924,0.71976,0.6842,0.29303,0.94078,-0.11108,0.76527$, -
$0.31605,0.92453,-0.66616,0.78766,-0.92145,0.42314,-0.94315,0.09585,-$
$1,0.03191,-0.66431,-0.66278,-0.4601,-0.78174,-0.13486$, -
$0.88082,0.19765,-0.85137,0.48904,-0.70247,0.69886,-0.46048,0.76066$, -
0.13194 , g
$1,0,1,0.16195,1,-0.05558,1,0.01373,1,-0.12352,1,-0.01511,1,-$
$0.01731,1,-0.06374,1,-0.07157,1,0.059,1,-0.10108,1,-0.02685,1,-$
$0.22978,1,-0.06823,1,0.08299,1,-0.14194,1,-0.07439, \mathrm{~g}$
$1,0,0.95559,-0.00155,0.86421,-0.13244,0.94982,-0.00461,0.82809,-$
$0.51171,0.92441,0.10368,1,-0.14247,0.99264,-0.02542,0.95853,-$
$0.15518,0.84013,0.61739,1,-0.16321,0.87492,-0.08495,0.85741,-$
0.01664,0.84132,-0.01769,0.82427,-0.01867,0.80634,-0.01957,0.78761,-
0.02039 , g
$1,0,0.79378,0.29492,0.64064,0.52312,0.41319,0.68158,0.14177,0.83548$, -
$0.16831,0.78772,-0.42911,0.72328,-0.57165,0.41471,-0.75436,0.16755,-$
$0.69977,-0.09856,-0.57695,-0.23503,-0.40637,-0.38287,-0.17437,-$
$0.5254,0.01523,-0.48707,0.1903,-0.38059,0.31008,-0.23199,0.34572$, -
0.08036 , g
$1,0,0.88085,0.35232,0.68389,0.65128,0.34816,0.79784,0.05832,0.90842$, -
$0.29784,0.8649,-0.62635,0.6959,-0.77106,0.39309,-0.85803,0.08408$, -
$0.81641,-0.24017,-0.64579,-0.50022,-0.39766,-0.68337,-0.11147$, -
$0.75533,0.17041,-0.71504,0.40675,-0.57649,0.56626,-0.36765,0.62765,-$
$0.13305, \mathrm{~g}$
$1,0,0.89589,0.39286,0.66129,0.71804,0.29521,0.90824,-0.04787,0.94415,-$
$0.45725,0.84605,-0.7766,0.58511,-0.92819,0.25133,-0.92282,-0.15315,-$
$0.76064,-0.48404,-0.50931,-0.76197,-0.14895,-0.88591,0.21581,-$
$0.85703,0.53229,-0.68593,0.74846,-0.40656,0.83142$,-
$0.07029,0.76862,0.27926, \mathrm{~g}$
1,0,1,-0.24051,1,-0.20253,0.87342,-
$0.10127,0.88608,0.01266,1,0.11392,0.92405,0.06329,0.8481$, -
$0.03797,0.63291,-0.36709,0.87342$,-
$0.01266,0.93671,0.06329,1,0.25316,0.62025,-0.37975,0.84637,-0.0554,1,-$
$0.06329,0.53165,0.02532,0.83544,-0.02532, \mathrm{~g}$
$1,0,0.7479,0.0084,0.83312,0.01659,0.82638,0.02469,0.86555,0.01681,0.60$ 504,0.05882,0.79093,0.04731,0.77441,0.05407,0.64706,0.19328,0.84034,0. 04202,0.71285,0.07122,0.68895,0.07577,0.66387,0.08403,0.63728,0.08296, $0.61345,0.01681,0.58187,0.08757,0.5533,0.08891, \mathrm{~g}$
$1,0,0.85013,0.01809,0.92211,0.01456,0.92046,0.0218,0.92765,0.0801,0.87$ 597,0.1137,0.91161,0.0432,0.90738,0.05018,0.87339,0.02842,0.95866,0,0. 89097,0.07047,0.8843,0.07697,0.83721,0.10853,0.86923,0.0895,0.87597,0. 08786,0.85198,0.10134,0.84258,0.10698,g
$1,0,1,-0.01179,1,-0.00343,1,-0.01565,1,-0.01565,1,-0.02809,1,-$
$0.02187,0.99828,-0.03087,0.99528,-0.03238,0.99314,-0.03452,1,-$
$0.03881,1,-0.05039,1,-0.04931,0.99842,-0.05527,0.994$, -
$0.06304,0.99057,-0.06497,0.98971,-0.06668, \mathrm{~g}$
1,0,0.89505, -
$0.03168,0.87525,0.05545,0.89505,0.01386,0.92871,0.02772,0.91287$, -
0.0099,0.94059, -
$0.01584,0.91881,0.03366,0.93663,0,0.94257,0.01386,0.90495,0.00792,0.88$ 713,-
$0.01782,0.89307,0.02376,0.89002,0.01611,0.88119,0.00198,0.87327,0.0415$ 8,0.86733,0.02376,g 1,0,0.90071,0.01773,1,-
$0.01773,0.90071,0.00709,0.84752,0.05674,1,0.03546,0.97872,0.01064,0.97$ 518,0.03546,1,-0.03191,0.89716,-
$0.03191,0.8617,0.07801,1,0.0922,0.90071,0.0461,0.94305,0.03247,0.94681$,0.02482,1,0.01064,0.93617,0.02128,g 1,0,0.39394,-
$0.24242,0.62655,0.0127,0.45455,0.09091,0.63636,0.09091,0.21212$,-
$0.21212,0.57576,0.15152,0.39394,0,0.56156,0.04561,0.51515,0.0303,0.787$
$88,0.18182,0.30303,-0.15152,0.48526,0.05929,0.46362,0.06142,0.33333$, -
$0.0303,0.41856,0.0641,0.39394,0.24242, \mathrm{~g}$
$1,0,0.86689,0.3595,0.72014,0.66667,0.37201,0.83049,0.08646,0.85893$, -
0.24118,0.86121,-0.51763,0.67577,-0.68714,0.41524,-0.77019,0.09898, -
$0.69397,-0.13652,-0.49488,-0.42207,-0.32537,-0.57679,-0.02844,-$
$0.59954,0.1536,-0.53127,0.32309,-0.37088,0.46189,-$
0.19681,0.40956,0.0182,g
$1,0,0.89563,0.37917,0.67311,0.69438,0.35916,0.88696,-0.04193,0.93345$,
$0.38875,0.84414,-0.67274,0.62078,-0.8268,0.30356,-0.8615,-0.05365,-$
$0.73564,-0.34275,-0.51778,-0.62443,-0.23428,-0.73855,0.06911,-$
$0.73856,0.33531,-0.62296,0.52414,-0.42086,0.61217,-$
0.17343,0.60073,0.0866,g
$1,0,0.90547,0.41113,0.65354,0.74761,0.29921,0.95905,-0.13342,0.9782,-$
$0.52236,0.83263,-0.79657,0.55086,-0.96631,0.15192,-0.93001,-0.25554$, -
$0.71863,-0.59379,-0.41546,-0.85205,-0.0225,-0.93788,0.36318$,-
0.85368,0.67538,-0.61959,0.85977, -
$0.28123,0.88654,0.098,0.75495,0.46301, \mathrm{~g}$
$1,0,1,1,0.367,0.06158,0.12993,0.92713,-0.27586,0.93596,-$
$0.31527,0.37685,-0.87192,0.36946,-0.92857,-0.08867,-0.38916,-0.34236$, -
$0.46552,-0.82512,-0.05419,-0.93596,0.25616,-0.20443,0.73792$, -
$0.4595,0.85471,-0.06831,1,1,0.3867,0.00246,0.17758,0.7979, \mathrm{~g}$
$1,0,1,0.51515,0.45455,0.33333,0.06061,0.36364,-0.32104,0.73062$, -
$0.45455,0.48485,-0.57576,0,-0.57576,-0.12121,-0.33333,-0.48485,-$
$0.09091,-0.84848,0.48485,-0.57576,0.57576,-0.42424,1,-$
$0.39394,0.72961,0.12331,0.9697,0.57576,0.24242,0.36364,0.09091,0.33333$, g
$1,0,0.8811,0,0.94817,-0.02744,0.93598$,
$0.0122,0.90244,0.01829,0.90244,0.01829,0.93902,0.00915,0.95732,0.00305$,1,0.02744,0.94207,-
$0.0122,0.90854,0.02439,0.91463,0.05488,0.99695,0.04878,0.89666,0.02226$,0.90854,0.00915,1,0.05488,0.97561,-0.0122,g
$1,0,0.82624,0.08156,0.79078,-0.08156,0.90426,-$
$0.01773,0.92908,0.01064,0.80142,0.08865,0.94681$,-
$0.00709,0.94326,0,0.93262,0.20213,0.95035,-$
$0.00709,0.91489,0.00709,0.80496,0.07092,0.91135,0.15957,0.89527,0.0816$ 5,0.7766,0.06738,0.92553,0.18085,0.92553,0,g
1,0,0.74468,0.10638,0.88706,0.00982,0.88542,0.01471, 0.87234,-
$0.01418,0.7305,0.10638,0.87657,0.02912,0.87235,0.03382,0.95745,0.07801$, 0.95035,0.04255,0.85597,0.04743,0.84931,0.05178,0.87234,0.11348,0.834

29,0.06014,0.74468,-0.03546,0.8171,0.068,0.80774,0.07173,g
$1,0,0.87578,0.03727,0.89951,0.00343,0.8921,0.0051,0.86335,0,0.95031,0$.
07453,0.87021,0.00994,0.86303,0.01151,0.83851,-
$0.06211,0.85714,0.02484,0.84182,0.01603,0.83486,0.01749,0.79503$,
$0.04348,0.82111,0.02033,0.81988,0.08696,0.80757,0.02308,0.80088,0.0244$ 1, g
$1,0,0.97513,0.0071,0.98579,0.01954,1,0.01954,0.9929,0.01599,0.95737,0$. $02309,0.97158,0.03552,1,0.0373,0.97869,0.02131,0.98579,0.05684,0.97158$,0.04796,0.94494,0.05506,0.98401,0.03552,0.9754,0.06477,0.94849,0.0817 1,0.99112,0.06217,0.98934,0.09947,g
$1,0,1,0.01105,1,0.01105,1,0.0232,0.99448,-0.01436,0.99448$,
$0.00221,0.98343,0.0232,1,0.00884,0.97569,0.00773,0.97901,0.01657,0.980$ 11,0.00663,0.98122,0.02099,0.97127,-
$0.00663,0.98033,0.016,0.97901,0.01547,0.98564,0.02099,0.98674,0.02762$, g
$1,0,1,-0.01342,1,0.01566,1$, -
$0.00224,1,0.06264,0.97763,0.04474,0.95973,0.02908,1,0.06488,0.98881,0$. $03356,1,0.03579,0.99776,0.09396,0.95749,0.07383,1,0.10067,0.99989,0.08$ 763,0.99105,0.08501,1,0.10067,1,0.10067,g
$1,0,0.8842,0.36724,0.67123,0.67382,0.39613,0.86399,0.02424,0.93182,-$
$0.35148,0.83713,-0.60316,0.58842,-0.78658,0.38778,-0.83285,-0.00642$, -
$0.69318,-0.32963,-0.52504,-0.53924,-0.27377,-0.68126,0.00806$, -
$0.69774,0.26028,-0.60678,0.44569,-0.43383,0.54209$, -
$0.21542,0.56286,0.02823, \mathrm{~g}$
1,0,0.90147,0.41786,0.64131,0.75725,0.3044,0.95148,-0.20449,0.96534, -
$0.55483,0.81191,-0.81857,0.50949,-0.96986,0.10345,-0.91456,-0.31412,-$
$0.70163,-0.65461,-0.32354,-0.88999,0.05865,-0.94172,0.44483,-$
0.82154,0.74105,-0.55231,0.89415,
$0.18725,0.87893,0.20359,0.70555,0.54852, \mathrm{~g}$
$1,0,0.32789,0.11042,0.1597,0.29308,0.1402,0.74485,-0.25131,0.91993$,-
$0.16503,0.26664,-0.63714,0.24865,-0.9765,-0.00337,-0.23227,-0.19909$, -
$0.30522,-0.48886,-0.14426,-0.89991,0.09345,-0.28916,0.28307,-$
0.1856,0.39599, -
$0.11498,0.31005,0.05614,0.21443,0.2054,0.13376,0.26422, \mathrm{~g}$
$1,0,0.65845,0.43617,0.44681,0.74804,0.05319,0.85106,-0.32027,0.82139,-$
$0.68253,0.52408,-0.84211,0.07111,-0.82811,-0.28723,-0.47032,-0.71725$,
$0.04759,-0.86002,0.23292,-0.76316,0.56663,-0.52128,0.743$,
$0.18645,0.74758,0.23713,0.45185,0.59071,0.20549,0.76764$, -
$0.18533,0.74356, \mathrm{~g}$
$1,0,0.19466,0.05725,0.04198,0.25191,-0.10557,0.48866,-0.18321$, -
$0.18321,-0.41985,0.06107,-0.4542,0.0916,-0.16412,-0.30534,-0.10305$,
$0.39695,0.18702,-0.17557,0.34012,-0.11953,0.28626$, -
$0.16031,0.21645,0.24692,0.03913,0.31092,-0.03817,0.26336,-$
$0.16794,0.16794,-0.30153,-0.33588, \mathrm{~g}$
1,0,0.98002,0.00075,1,0,0.98982,-
$0.00075,0.94721,0.02394,0.977,0.0213,0.97888,0.03073,0.9917,0.02338,0$.
93929,0.05713,0.93552,0.05279,0.97738,0.05524,1,0.06241,0.94155,0.0810 $7,0.96709,0.07255,0.95701,0.08088,0.9819,0.08126,0.97247,0.08616, \mathrm{~g}$ $1,0,0.82254,-0.07572,0.80462,0.00231,0.87514,-0.01214,0.86821$, -
$0.07514,0.72832,-0.11734,0.84624,0.05029,0.83121,-$
$0.07399,0.74798,0.06705,0.78324,0.06358,0.86763,-0.0237,0.78844$,
$0.06012,0.74451,-0.0237,0.76717,-0.02731,0.74046,-0.0763,0.70058$, -
0.0422,0.78439,0.01214,g

1,0,0.35346,-0.13768,0.69387,-0.02423,0.68195,-0.03574,0.55717,-
0.06119,0.61836,-0.10467,0.62099,-0.06527,0.59361,-0.07289,0.42271, -
$0.26409,0.58213,0.04992,0.49736,-0.08771,0.46241,-0.08989,0.45008,-$
$0.00564,0.39146,-0.09038,0.35588,-0.10306,0.32232,-0.08637,0.28943$,
0.083, g
$1,0,0.76046,0.01092,0.86335,0.00258,0.85821,0.00384,0.79988,0.02304,0$.
81504,0.12068,0.83096,0.00744,0.81815,0.00854,0.82777,-
$0.06974,0.76531,0.03881,0.76979,0.01148,0.75071,0.01232,0.77138,-$
$0.00303,0.70886,0.01375,0.66161,0.00849,0.66298,0.01484,0.63887,0.0152$
5, g
$1,0,0.66667,-0.01366,0.97404,0.06831,0.4959,0.50137,0.75683,-$
0.00273,0.65164,-0.14071,0.40164,-
$0.48907,0.39208,0.58743,0.76776,0.31831,0.78552,0.11339,0.47541$, -
$0.44945,1,0.00683,0.60656,0.06967,0.68656,0.17088,0.87568,0.07787,0.55$
328,0.2459,0.13934,0.48087,g
$1,0,0.83508,0.08298,0.73739,-0.14706,0.84349,-0.05567,0.90441,-$
$0.04622,0.89391,0.1313,0.81197,0.06723,0.79307,-0.08929,1,-$
$0.02101,0.96639,0.06618,0.87605,0.01155,0.77521,0.06618,0.95378,-$
$0.04202,0.83479,0.00123,1,0.12815,0.8666,-0.10714,0.90546,-0.04307, g$
1,0,0.95113,0.00419, 0.95183,-0.02723,0.93438, -
$0.0192,0.9459,0.01606,0.9651,0.03281,0.94171,0.0733,0.94625,-$
$0.01326,0.97173,0.0014,0.94834,0.06038,0.9267,0.08412,0.93124,0.10087$,
$0.9452,0.01361,0.93522,0.04925,0.93159,0.08168,0.94066,-$
0.00035,0.91483,0.04712,g

1,0,0.94701,-0.00034,0.93207,-0.03227,0.95177,-
$0.03431,0.95584,0.02446,0.94124,0.01766,0.92595,0.04688,0.93954,-$
$0.01461,0.94837,0.02004,0.93784,0.01393,0.91406,0.07677,0.8947,0.06148$
,0.93988,0.03193,0.92489,0.02542,0.9212,0.02242,0.92459,0.00442,0.9269
7,-0.00577,g
1,0,0.90608,-0.01657,0.98122,-0.01989,0.95691,-
$0.03646,0.85746,0.0011,0.89724,-0.03315,0.89061,-0.01436,0.90608$,
$0.0453,0.91381,-0.00884,0.80773,-0.12928,0.88729,0.01215,0.92155$,
$0.0232,0.9105,-0.02099,0.89147,-0.0776,0.82983,-0.17238,0.96022$, -
0.03757,0.87403,-0.16243, g
$1,0,0.8471,0.13533,0.73638,-0.06151,0.87873,0.0826,0.88928,-$
$0.09139,0.78735,0.06678,0.80668,-0.00351,0.79262,-0.01054,0.85764$, -
$0.04569,0.8717,-0.03515,0.81722,-0.0949,0.71002,0.04394,0.86467,-$
$0.15114,0.81147,-0.04822,0.78207,-0.00703,0.75747,-0.06678,0.85764$, -
$0.06151, \mathrm{~g}$
\# set class index to be last attribute
instances.class_index = instances.num_attributes - 1
\# build the Nearest-neighbor-like algorithm using non-nested generalized exemplars
\# hyperrectangles that can be viewed as if-then rules
from weka.classifiers import Classifier
cls = Classifier(classname="weka.classifiers.rules.NNge")
cls.build_classifier(instances)
cls.description
<bound method OptionHandler.description of
NNGE classifier
Rules generated :
class g IF : a01=1.0 ^ a02=0.0 ^ $0.79847<=a 03<=1.0 \wedge$ $0.07572<=a 04<=0.45455$ ^ $0.73638<=a 05<=1.0^{\wedge}-0.16964<=a 06<=0.71429 \wedge$ $0.66667<=a 07<=1.0$ ^ $-0.07653<=a 08<=0.71429 \wedge 0.84881<=a 09<=1.0 \wedge$ $0.49962<=a 10<=-0.07398$ ^ $0.66026<=a 11<=1.0$ ^ $-0.14286<=a 12<=0.6132$ $0.77937<=a 13<=1.0$ ^ $-0.45455<=a 14<=0.48981$ ^ $0.63636<=a 15<=1.0$ ^ $0.07399<=a 16<=0.58986$ ^ $-0.375<=a 17<=1.0$ ^ $-0.63636<=a 18<=1.0$ ^ $0.59615<=a 19<=1.0$ ^ $-0.27273<=a 20<=0.59862 \wedge 0.52494<=a 21<=1.0$ ^ $0.45455<=a 22<=0.92001$ ^ $0.45582<=a 23<=1.0$ ^ $-0.25101<=a 24<=1.0$ ^ $0.28571<=a 25<=1.0 \wedge-0.28571<=a 26<=1.0 \wedge 0.3293<=a 27<=1.0$ ^ $0.06995<=a 28<=1.0$ ^ $0.27381<=a 29<=1.0$ ^ $-0.0763<=a 30<=1.0$ ^ $0.22427<=a 31<=1.0$ ^ $-0.1875<=a 32<=1.0$ ^ $0.18086<=a 33<=1.0$ ^ $0.07439<=a 34<=1.0 \quad$ (13)
class g IF : a01=1.0 ^ a02=0.0 ^ 0.61538<=a03<=0.95559 ^ $0.13241<=a 04<=0.18923$ ^ $0.53755<=a 05<=0.98994$ ^ $-0.13244<=a 06<=0.16996$ ^ $0.72727<=a 07<=0.94982$ ^ $-0.00461<=a 08<=0.12877$
$0.65077<=a 09<=0.82809 \wedge-0.51171<=a 10<=-0.09188$
$0.66798<=a 11<=0.95842$ ^ $-0.23518<=a 12<=0.10368$ ^ $0.73961<=a 13<=1.0$ ^ $0.1917<=a 14<=0.0506$ ^ $0.72322<=a 15<=0.99264 \wedge$ - $0.02542<=a 16<=0.10195$ ^ $0.63043<=a 17<=0.958533^{\wedge}-0.15518<=a 18<=0.03756$ ^ $0.61692<=a 19<=0.84013$ ^ $-0.11858<=a 20<=0.61739$ ^ $0.66233<=a 21<=1.0$ ^ $-0.25296<=a 22<=0.07573$ ^ $0.63878<=a 23<=1.0$ ^ $-0.28656<=a 24<=0.08041$ ^ $0.60154<=a 25<=0.85741$ ^ $-0.10474<=a 26<=-0.01207$ ^ $0.58803<=a 27<=0.84132$ ^ -
$0.12041<=a 28<=0.08767$ ^ $0.55077<=a 29<=0.82427$ ^ $-0.20949<=a 30<=0.25692$
^ $0.37549<=a 31<=0.90409$ ^ $-0.01957<=a 32<=0.11066$ ^
$0.50609<=a 33<=0.78761$ ^ $-0.02039<=a 34<=0.09322$ (4)
class g IF : a01=1.0 ^ a02=0.0 ^ 0.21429<=a03<=1.0 ^ -
$0.24783<=a 04<=0.51515$ ^ $0.06213<=a 05<=1.0$ ^ $-0.20253<=a 06<=0.82161$ ^
$0.05319<=a 07<=1.0$ ^ $-0.13333<=a 08<=0.98903$ ^ $-0.55941<=a 09<=1.0$ ^ -
$0.05882<=a 10<=1.0 \wedge-0.76229<=a 11<=1.0 \wedge-0.21212<=a 12<=1.0$ ^ -
$0.93882<=a 13<=1.0$ ^ $-0.48907<=a 14<=1.0$ ^ $-0.86709<=a 15<=1.0$ ^
$0.57486<=a 16<=0.77128{ }^{\wedge}-0.6603<=a 17<=1.0$ ^ $-0.71725<=a 18<=1.0$ ^
$0.25105<=a 19<=1.0$ ^ $-0.87787<=a 20<=1.0$ ^ $0.12439<=a 21<=1.0$ ^ -
$0.89064<=a 22<=1.0$ ^ $0.18932<=a 23<=1.0$ ^ $-0.72454<=a 24<=1.0$
$0.21951<=a 25<=1.0$ ^ $-0.39394<=a 26<=1.0$ ^ $0.16813<=a 27<=1.0$
$0.06637<=a 28<=1.0$ ^ $0.07497<=a 29<=1.0$ ^ $-0.32298<=a 30<=1.0$ ^
$0.1737<=a 31<=1.0 \wedge-0.25706<=a 32<=1.0$ ^ $-0.81383<=a 33<=1.0$ ^
$0.09186<=a 34<=1.0 \quad$ (93)
class g IF : a01=1.0 ^ a02=0.0 ^ $0.47938<=a 03<=1.0$ ^ -
$0.35526<=a 04<=0.45455$ ^ $0.42784<=a 05<=1.0$ ^ - $0.78509<=a 06<=0.62937$ ^
$0.70103<=a 07<=1.0$ ^ $-0.85741<=a 08<=0.09557$ ^ $0.66725<=a 09<=1.0$
$0.43107<=a 10<=0.61053$ ^ $0.26289<=a 11<=1.0$ ^ $-1.0<=a 12<=0.56173$
$0.49485<=a 13<=1.0$ ^ $-0.51874<=a 14<=0.15979 \wedge 0.34395<=a 15<=1.0$ ^
$0.83519<=a 16<=0.14662$ ^ $0.37254<=a 17<=1.0$ ^ $-0.70729<=a 18<=0.39337$
$0.12245<=a 19<=1.0$ ^ $-1.0<=a 20<=0.2659$ ^ $0.05982<=a 21<=1.0$ ^ -
$0.78316<=a 22<=0.26133$ ^ $0.02309<=a 23<=1.0$ ^ $-1.0<=a 24<=0.22037 \wedge$
$0.03286<=a 25<=1.0$ ^ $-0.96296<=a 26<=0.19588$ ^ $0.09312<=a 27<=1.0$ ^
$0.86583<=a 28<=-0.02302 \wedge-0.07162<=a 29<=1.0$ ^ $-1.0<=a 30<=0.45455$ $0.05707<=a 31<=1.0$ ^ $-0.92128<=a 32<=0.53372$ ^ $-0.13832<=a 33<=1.0$ ^ $1.0<=a 34<=-0.09808$ (43)
class g IF : a01=1.0 ^ a02=0.0 ^ a03=0.35346 ^ a04=-0.13768 ^ $\mathrm{a} 05=0.69387$ ^ $\mathrm{a} 06=-0.02423$ ^ $\mathrm{a} 07=0.68195$ ^ $\mathrm{a} 08=-0.03574$ ^ $\mathrm{a} 09=0.55717$ ^ $a 10=-0.06119$ ^ $a 11=0.61836$ ^ $a 12=-0.10467$ ^ $a 13=0.62099$ ^ $a 14=-$ 0.06527 ^ $\mathrm{a} 15=0.59361$ ^ $\mathrm{a} 16=-0.07289$ ^ $\mathrm{a} 17=0.42271$ ^ $\mathrm{a} 18=-0.26409$ ^ $\mathrm{a} 19=0.58213$ ^ $\mathrm{a} 20=0.04992$ ^ $\mathrm{a} 21=0.49736$ ^ $\mathrm{a} 22=-0.08771$ ^ $\mathrm{a} 23=0.46241$ ^ $\mathrm{a} 24=-0.08989 \wedge \mathrm{a} 25=0.45008 \wedge \mathrm{a} 26=-0.00564 \wedge$ a27=0.39146 ^ $\mathrm{a} 28=-0.09038$ ^ $\mathrm{a} 29=0.35588$ ^ $\mathrm{a} 30=-0.10306$ ^ $\mathrm{a} 31=0.32232$ ^ $\mathrm{a} 32=-0.08637$ $a 33=0.28943 \wedge$ a34 $=-0.083$ (1)
class g IF : a01=1.0 ^ a02=0.0 ^ a03=0.46785 ^ a04=0.11308 ^ $\mathrm{a} 05=0.5898$ ^ $\mathrm{a} 06=0.00665$ ^ $\mathrm{a} 07=0.55432$ ^ $\mathrm{a} 08=0.06874$ ^ $\mathrm{a} 09=0.47894$ ^ $\mathrm{a} 10=-0.13969$ ^ $\mathrm{a} 11=0.52993$ ^ $\mathrm{a} 12=0.0133$ ^ $\mathrm{a} 13=0.63858$ ^ $\mathrm{a} 14=-0.16186$ ^ $\mathrm{a} 15=0.67849$ ^ $\mathrm{a} 16=-0.03326$ ^ $\mathrm{a} 17=0.54545$ ^ $\mathrm{a} 18=-0.13525$ ^ $\mathrm{a} 19=0.52993$ ^ $\mathrm{a} 20=-0.04656$ ^ $\mathrm{a} 21=0.47894$ ^ $\mathrm{a} 22=-0.19512$ ^ $\mathrm{a} 23=0.50776$ ^ $\mathrm{a} 24=-$
 $a 29=0.59867$ ^ $a 30=-0.02882$ ^ $a 31=0.53659$ ^ $a 32=-0.11752$ ^ $a 33=0.56319$ ^ a34=-0.04435 (1)
class g IF : a01=1.0 ^ a02=0.0 ^ $0.5894<=a 03<=1.0$ ^ $0.92453<=a 04<=-0.37838$ ^ $0.64865<=a 05<=1.0$ ^ $0.10278<=a 06<=0.76131$ $0.49057<=a 07<=0.8706$ ^ $-0.24324<=a 08<=0.18593$ ^ $0.5558<=a 09<=1.0$ ^ $0.09925<=a 10<=0.18919$ ^ $0.32781<=a 11<=1.0^{\wedge}-0.27027<=a 12<=0.4799$ ^ $0.45283<=a 13<=0.71947$ ^ $-0.1608<=a 14<=0.28954$ ^ $0.62162<=a 15<=1.0$ ^ $0.0566<=a 16<=0.32925$ ^ $0.32432<=a 17<=0.98878$ ^ $-0.50126<=a 18<=0.42715$ ^ $0.5283<=a 19<=0.80025$ ^ $-0.24497<=a 20<=0.13907$ ^ $0.5283<=a 21<=0.88065$ ^ $-0.19095<=a 22<=0.42528$ ^ $0.5312<=a 23<=1.0$ ^ $-0.12312<=a 24<=0.44872 \wedge$ $0.35135<=a 25<=1.0$ ^ $-0.2973<=a 26<=0.79245$ ^ $0.44174<=a 27<=0.9289$ $0.22163<=a 28<=0.482$ ^ $0.12473<=a 29<=1.0$ ^ $-1.0<=a 30<=1.0$ ^ $0.3507<=a 31<=1.0$ ^ $-0.59459<=a 32<=0.49721 \wedge 0.30588<=a 33<=0.51382$ $0.24324<=a 34<=0.49831$ (5)
class g IF : a01=1.0 ^ a02=0.0 ^ a03=0.19466 ^ a04=0.05725 ^ $\mathrm{a} 05=0.04198$ ^ $\mathrm{a} 06=0.25191$ ^ $\mathrm{a} 07=-0.10557$ ^ $\mathrm{a} 08=0.48866 \wedge \mathrm{a} 09=-0.18321$ ^ $\mathrm{a} 10=-0.18321$ ^ $\mathrm{a} 11=-0.41985$ ^ $\mathrm{a} 12=0.06107$ ^ $\mathrm{a} 13=-0.4542$ ^ $\mathrm{a} 14=0.0916$ ^ $\mathrm{a} 15=-0.16412$ ^ $a 16=-0.30534 \wedge$ a17 $=-0.10305$ ^ $a 18=-0.39695$ ^ $\mathrm{a} 19=0.18702$ ^ $\mathrm{a} 20=-0.17557$ ^ $\mathrm{a} 21=0.34012$ ^ $\mathrm{a} 22=-0.11953$ ^ $\mathrm{a} 23=0.28626$ ^ $\mathrm{a} 24=-0.16031$ ^ $\mathrm{a} 25=0.21645$ ^ $\mathrm{a} 26=0.24692$ ^ $\mathrm{a} 27=0.03913$ ^ $\mathrm{a} 28=0.31092$ ^ $a 29=-0.03817$ ^ $a 30=0.26336$ ^ $a 31=-0.16794$ ^ $a 32=0.16794$ ^ $a 33=-$ 0.30153 ^ $\mathrm{a} 34=-0.33588$ (1)
class g IF : a01=1.0 ^ $\mathrm{a} 02=0.0$ ^ $0.51207<=a 03<=1.0$ ^ $0.09802<=a 04<=1.0$ ^ $0.64064<=a 05<=1.0$ ^ $0.25101<=a 06<=1.0$ ^ $0.29303<=a 07<=0.9839$ ^ $0.33044<=a 08<=1.0$ ^ $-0.33333<=a 09<=0.80365$ ^
$0.46427<=a 10<=1.0$ ^ $-1.0<=a 11<=0.74977$ ^ $0.59942<=a 12<=1.0$ ^ -
$1.0<=a 13<=0.6526$ ^ $0.66541<=a 14<=1.0$ ^ $-1.0<=a 15<=0.55311$ ^
$0.32558<=a 16<=1.0 \wedge-1.0<=a 17<=0.41629 \wedge-0.58634<=a 18<=0.98722$
$1.0<=a 19<=0.25539$ ^ $-0.66667<=a 20<=1.0 \wedge-1.0<=a 21<=0.13712$
$1.0<=a 22<=0.89383 \wedge-1.0<=a 23<=0.00494 \wedge-1.0<=a 24<=0.88869 \wedge$
$1.0<=a 25<=0.90014 \wedge-1.0<=a 26<=0.7978 \wedge-1.0<=a 27<=1.0$
$1.0<=a 28<=0.78004$ ^ $-1.0<=a 29<=1.0 \wedge-1.0<=a 30<=0.71454$
$1.0<=a 31<=1.0 \wedge-1.0<=a 32<=0.64363$ ^ $-0.91903<=a 33<=1.0$ ^ -
$0.94823<=a 34<=0.55835$ (32)
class g IF : a01=1.0 ^ a02=0.0 ^ 0.44444<=a03<=1.0 ^
$0.44444<=a 04<=1.0$ ^ $0.367<=a 05<=0.62745$ ^ $0.06158<=a 06<=1.0$ ^ $0.22222<=a 07<=0.12993$ ^ $0.92713<=a 08<=1.0$ ^ $-0.4902<=a 09<=-0.27586$ ^ $0.88889<=a 10<=0.93596$ ^ $-1.0<=a 11<=-0.31527$ ^ $0.33333<=a 12<=0.58824 \wedge$ $-1.0<=a 13<=-0.87192$ ^ $-0.11111<=a 14<=0.36946$ ^ $-1.0<=a 15<=-0.92857$ $0.33333<=a 16<=-0.08867$ ^ $-0.66667<=a 17<=-0.38916$ ^ $-0.77778<=a 18<=-$ 0.34236 ^ $-0.46552<=a 19<=0.55556 \wedge-1.0<=a 20<=-0.82512 \wedge$ $0.22222<=a 21<=0.35294^{\wedge}-1.0<=a 22<=-0.77778$ ^ $0.25616<=a 23<=0.77778$ $-0.72549<=a 24<=-0.20443$ ^ $0.33333<=a 25<=0.92157$ ^ $-0.4595<=a 26<=0.0$ $0.85471<=a 27<=0.92874 \wedge^{\wedge}-0.06831<=a 28<=0.45019$ ^ $0.57454<=a 29<=1.0$ ^ $0.56863<=a 30<=1.0$ ^ $0.22222<=a 31<=0.3867$ ^ $0.00246<=a 32<=1.0$ $0.55556<=a 33<=0.17758$ ^ $0.7979<=a 34<=1.0$ (3)
class g IF : a01=1.0 ^ a02=0.0 ^ $\mathrm{a} 03=0.31034$ ^ $\mathrm{a} 04=-0.10345$ ^ $\mathrm{a} 05=0.24138$ ^ $\mathrm{a} 06=-0.10345$ ^ $\mathrm{a} 07=0.2069$ ^ $\mathrm{a} 08=-0.06897$ ^ $\mathrm{a} 09=0.07405$ ^ $a 10=-0.05431 \wedge$ a11=0.03649 ^ $a 12=-0.03689 \wedge$ a13 $=0.01707$ ^ $a 14=-0.02383$ ^ $\mathrm{a} 15=0.00741$ ^ $\mathrm{a} 16=-0.01482$ ^ $\mathrm{a} 17=0.00281$ ^ $\mathrm{a} 18=-0.00893$ ^ $\mathrm{a} 19=7.8 \mathrm{E}-4$ ^ $\mathrm{a} 20=-0.00523$ ^ $\mathrm{a} 21=-3.0 \mathrm{E}-5$ ^ $\mathrm{a} 22=-0.00299$ ^ $\mathrm{a} 23=-2.8 \mathrm{E}-4$ ^ $\mathrm{a} 24=-$ 0.00166 ^ $\mathrm{a} 25=-3.1 \mathrm{E}-4^{\wedge} \mathrm{a} 26=-9.0 \mathrm{E}-4 \wedge \mathrm{a} 27=-2.5 \mathrm{E}-4{ }^{\wedge} \mathrm{a} 28=-4.8 \mathrm{E}-4{ }^{\wedge}$ $\mathrm{a} 29=-1.8 \mathrm{E}-4{ }^{\wedge} \mathrm{a} 30=-2.4 \mathrm{E}-4$ ^ $\mathrm{a} 31=-1.2 \mathrm{E}-4 \wedge \mathrm{a} 32=-1.2 \mathrm{E}-4 \wedge \mathrm{a} 33=-8.0 \mathrm{E}-5$ ^ a34=-6.0E-5 (1)
class g IF : a01=1.0 ^ a02=0.0 ^ $0.25<=a 03<=1.0$ ^
$0.0252<=a 04<=0.5$ ^ $0.15236<=a 05<=1.0$ ^ $0.17293<=a 06<=0.77655$ ^ $0.03759<=a 07<=0.47564$ ^ $0.23966<=a 08<=1.0$ ^ $-0.25706<=a 09<=0.16851$ ^ $0.19939<=a 10<=0.9782$ ^ $-0.62526<=a 11<=0.06266$ ^ $0.14922<=a 12<=0.84605$ ^ $-0.86443<=a 13<=-0.02367$ ^ $0.10188<=a 14<=0.62078$ ^ $-0.9765<=a 15<=-$ $0.03685 \wedge-0.05409<=a 16<=0.41743 \wedge-0.93001<=a 17<=-0.03766 \wedge$ $0.44707<=a 18<=0.16709 \wedge-0.76064<=a 19<=-0.0323 \wedge$ $0.73285<=a 20<=0.01532$ ^ $-0.81056<=a 21<=-0.02474$ ^ $0.89991<=a 22<=0.00357$ ^ $-0.33197<=a 23<=0.26384$ ^ $-0.94172<=a 24<=-$ 0.00273 ^ $-0.2328<=a 25<=0.55984 \wedge-0.85703<=a 26<=0.00265$ $0.02089<=a 27<=0.74105 \wedge-0.68593<=a 28<=-0.00586$ $0.00294<=a 29<=0.89415 \wedge-0.43478<=a 30<=0.09599 \wedge-8.9 E-4<=a 31<=0.88654$ ^ $-0.30057<=a 32<=0.38915$ ^ $2.5 \mathrm{E}-4<=a 33<=0.76862$ ^ $0.0598<=a 34<=0.57656$ (16)
class g IF : a01=1.0 ^ a02=0.0 ^ a03=0.33333 ^ a04=-0.25 ^ $\mathrm{a} 05=0.44444{ }^{\wedge} \mathrm{a} 06=0.22222$ ^ $\mathrm{a} 07=0.38889$ ^ $\mathrm{a} 08=0.16667$ ^ $\mathrm{a} 09=0.41667$ $a 10=0.13889{ }^{\wedge} \mathrm{a} 11=0.5^{\wedge} \mathrm{a} 12=-0.11111$ ^ $\mathrm{a} 13=0.54911{ }^{\wedge} \mathrm{a} 14=-0.08443$ ^ $\mathrm{a} 15=0.58333$ ^ $\mathrm{a} 16=0.33333$ ^ $\mathrm{a} 17=0.55556$ ^ $\mathrm{a} 18=0.02778$ ^ $\mathrm{a} 19=0.25$ ^ $a 20=-0.19444$ ^ $a 21=0.47222 \wedge$ a22=-0.05556 ^ $223=0.52778$ ^ $a 24=-0.02778$ ^ $\mathrm{a} 25=0.38889$ ^ $\mathrm{a} 26=0.08333$ ^ $\mathrm{a} 27=0.41543$ ^ $\mathrm{a} 28=-0.14256$ ^ $\mathrm{a} 29=0.19444$
^ $\mathrm{a} 30=-0.13889$ ^ $\mathrm{a} 31=0.36924$ ^ $\mathrm{a} 32=-0.14809 \wedge$ a33=0.08333 ^ $\mathrm{a} 34=-0.5$ (1)
class g IF : $\mathrm{a} 01=1.0 \wedge \mathrm{a} 02=0.0 \wedge \mathrm{a} 03=0.4375 \wedge$ a04=0.04167 \wedge $\mathrm{a} 05=0.58333^{\wedge} \mathrm{a} 06=-0.10417$ ^ $\mathrm{a} 07=0.39583$ ^ $\mathrm{a} 08=0.0$ ^ $\mathrm{a} 09=0.33333$ ^ $\mathrm{a} 10=-0.0625{ }^{\wedge} \mathrm{a} 11=0.47917$ ^ $\mathrm{a} 12=0.0 \wedge$ a13=0.29167 ^ $\mathrm{a} 14=0.10417$ ^ $\mathrm{a} 15=0.54167$ ^ $\mathrm{a} 16=0.02083$ ^ $\mathrm{a} 17=0.4375$ ^ $\mathrm{a} 18=-0.22917$ ^ $\mathrm{a} 19=0.35417$ ^ $\mathrm{a} 20=-0.22917$ ^ $\mathrm{a} 21=0.33333 \wedge$ a22=0.08333 ^ $\mathrm{a} 23=0.25$ ^ $\mathrm{a} 24=0.1875$ ^ $\mathrm{a} 25=0.39583 \wedge$ a26=-0.1875 ^ $\mathrm{a} 27=0.44012 \wedge$ a28=-0.10064 ^ $\mathrm{a} 29=0.41667$ $\mathrm{a} 30=-0.08333 \wedge \mathrm{a} 31=0.58333 \wedge \mathrm{a} 32=-0.3125 \wedge \mathrm{a} 33=0.33333$ ^ $\mathrm{a} 34=-0.0625$ (1)
class g IF : a01=1.0 ^ a02=0.0 ^ a03=0.52542 ^ a04=-0.0339 ^ $\mathrm{a} 05=0.94915{ }^{\wedge} \mathrm{a} 06=0.08475{ }^{\wedge} \mathrm{a} 07=0.52542$ ^ $\mathrm{a} 08=-0.16949$ ^ $\mathrm{a} 09=0.30508$ ^ $\mathrm{a} 10=-0.01695$ ^ $\mathrm{a} 11=0.50847$ ^ $\mathrm{a} 12=-0.13559$ ^ $\mathrm{a} 13=0.64407$ ^ $\mathrm{a} 14=0.28814$ ^ $\mathrm{a} 15=0.83051$ ^ $\mathrm{a} 16=-0.35593$ ^ $\mathrm{a} 17=0.54237$ ^ $\mathrm{a} 18=0.01695$ ^ $\mathrm{a} 19=0.55932$ ^ $\mathrm{a} 20=0.0339$ ^ $\mathrm{a} 21=0.59322$ ^ $222=0.30508$ ^ $\mathrm{a} 23=0.86441$ ^ $\mathrm{a} 24=0.05085$ ^ $\mathrm{a} 25=0.40678$ ^ $\mathrm{a} 26=0.15254$ ^ $\mathrm{a} 27=0.67287$ ^ $\mathrm{a} 28=-0.00266$ ^ $\mathrm{a} 29=0.66102$ ^ $\mathrm{a} 30=-0.0339$ ^ $\mathrm{a} 31=0.83051$ ^ $\mathrm{a} 32=-0.15254$ ^ $\mathrm{a} 33=0.76271$ ^ $\mathrm{a} 34=-0.10169$ (1)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=0.0 ^ a04=0.0
$0.0<=a 05<=1.0$ ^ $0.0<=a 06<=0.12889$ ^ $0.88444<=a 07<=1.0$ ^
$0.02<=a 08<=1.0$ ^ $-1.0<=a 09<=0.0 \wedge-1.0<=a 10<=0.0 \wedge 0.0<=a 11<=1.0$ ^ $0.42444<=a 12<=0.0$ ^ $\mathrm{a} 13=1.0$ ^ $-0.11111<=\mathrm{a} 14<=0.19556$ ^ $0.0<=\mathrm{a} 15<=1.0$ ^ $-0.05333<=a 16<=0.0$ ^ $0.0<=a 17<=1.0 \wedge-0.81556<=a 18<=0.0$ $1.0<=a 19<=0.0 \wedge 0.0<=a 20<=1.0 \wedge$ a $21=1.0 \wedge-0.04<=a 22<=1.0 \wedge$ a $23=1.0$ ^ $-1.0<=a 24<=-0.18667$ ^ $\mathrm{a} 25=0.0 \wedge \mathrm{a} 26=0.0 \wedge \mathrm{a} 27=1.0 \wedge \mathrm{a} 28=-1.0$ ^ $\mathrm{a} 29=0.0$ ^ $\mathrm{a} 30=0.0$ ^ $0.0<=\mathrm{a} 31<=1.0$ ^ $0.0<=a 32<=0.11778$ ^ $0.90667<=a 33<=1.0$ ^ $0.09556<=a 34<=1.0$ (2)
class b IF : a01=1.0 ^ a02=0.0 ^ -0.205<=a03<=1.0 ^
$0.14754<=a 04<=1.0 \wedge-0.7619<=a 05<=1.0 \wedge-1.0<=a 06<=0.1$ $0.0<=a 07<=0.60784 \wedge-0.67273<=a 08<=0.3175$ ^ $0.0<=a 09<=0.65574$ ^ $0.14286<=a 10<=0.35$ ^ $-0.67285<=a 11<=1.0$ ^ $-0.89098<=a 12<=1.0 \wedge^{\wedge}$ $0.51504<=a 13<=1.0 \wedge-1.0<=a 14<=0.45489 \wedge-0.95489<=a 15<=1.0 \wedge$ $0.41818<=a 16<=1.0$ ^ $-0.38214<=a 17<=1.0 \wedge-1.0<=a 18<=1.0 \wedge$ ^ $0.34187<=a 19<=0.65558$ ^ $-0.21569<=a 20<=0.31408 \wedge-0.48<=a 21<=1.0 \wedge$ $0.21081<=\mathrm{a} 22<=0.49091$ ^ $0.16667<=\mathrm{a} 23<=1.0$ ^ $-0.41622<=\mathrm{a} 24<=1.0$ ^ $1.0<=a 25<=0.45098$ ^ $-1.0<=a 26<=0.16364$ ^ $0.24889<=a 27<=1.0$ ^ $1.0<=a 28<=-0.07027$ ^ $-0.47<=a 29<=1.0$ ^ $-0.31373<=a 30<=1.0$ ^ $0.66667<=a 31<=1.0$ ^ $-1.0<=a 32<=0.0$ ^ $0.0<=a 33<=0.4918$ ^ $0.29091<=a 34<=0.0305$
class g IF : a01=1.0 ^ $\mathrm{a} 02=0.0 \wedge \mathrm{a} 03=0.87772 \wedge \mathrm{a} 04=-0.08152 \wedge$ $\mathrm{a} 05=0.83424$ ^ $\mathrm{a} 06=0.07337$ ^ $\mathrm{a} 07=0.84783$ ^ $\mathrm{a} 08=0.04076$ ^ $209=0.77174$ ^ $\mathrm{a} 10=-0.02174 \wedge \mathrm{all}=0.77174 \wedge$ a12 $=-0.05707 \wedge$ a13 $=0.82337$ ^ $\mathrm{a} 14=-0.10598$ \wedge a15=0.67935 ^ a16=-0.00543 ^ a17=0.88043 ^ a18=-0.20924 ^ $\mathrm{a} 19=0.83424{ }^{\wedge} \mathrm{a} 20=0.03261 \wedge \mathrm{a} 21=0.86413 \wedge$ a22 $=-0.05978$ ^ $\mathrm{a} 23=0.97283$ ^ $\mathrm{a} 24=-0.27989 \wedge$ a25=0.85054 ^ $\mathrm{a} 26=-0.1875 \wedge$ a27=0.83705 ^ $\mathrm{a} 28=-0.10211$ ^ $\mathrm{a} 29=0.8587$ ^ $\mathrm{a} 30=-0.03261$ ^ $\mathrm{a} 31=0.78533$ ^ $\mathrm{a} 32=-0.1087$ ^ $\mathrm{a} 33=0.79076$ ^ a34=-0.00543 (1)
class g IF : a01=1.0 ^ a02=0.0 ^ $0.7983<=a 03<=0.98822$ ^ $0.02187<=a 04<=0.13069$ ^ $0.73061<=a 05<=0.93102$ ^ $0.20656<=a 06<=0.341$ ^
$0.64615<=\mathrm{a} 07<=0.83904$ ^ $0.19038<=\mathrm{a} 08<=0.35222$ ^ $0.36923<=\mathrm{a} 09<=0.74706$
^ $0.41252<=a 10<=0.48906$ ^ $0.44793<=a 11<=0.73584$
$0.46439<=a 12<=0.51879$ ^ $0.25<=a 13<=0.57898$ ^ $0.57308<=a 14<=0.60814$ ^
$0.25192<=a 15<=0.4921$ ^ $0.37115<=a 16<=0.66237$ ^ $0.15215<=a 17<=0.33354$
$0.51877<=a 18<=0.70443$ ^ $-0.09808<=a 19<=0.29587$ ^ $0.575<=a 20<=0.68873$ ^ $-0.03462<=a 21<=0.09599$ ^ $0.42885<=a 22<=0.73696$ ^
$0.08856<=a 23<=0.06338{ }^{\wedge} 0.44424<=a 24<=0.72236{ }^{\wedge}-0.16489<=a 25<=-$
0.08748 ^ $0.40006<=a 26<=0.69714$ ^ $-0.1994<=a 27<=-0.11925$ ^
$0.34976<=a 28<=0.60696{ }^{\wedge}-0.23832<=a 29<=-0.16209$ ^
$0.29541<=a 30<=0.56015$ ^ $-0.34717<=a 31<=-0.25516$ ^
$0.23896<=a 32<=0.51701$ ^ $-0.33483<=a 33<=-0.23846 \wedge$
$0.31154<=a 34<=0.42467$ (3)
class g IF : a01=1.0 ^ a02=0.0 ^ 0.34694<=a03<=0.76627 ^
$0.20408<=a 04<=0.21106$ ^ $0.46939<=a 05<=0.63935$ ^ $0.2449<=a 06<=0.38112$ ^
$0.40816<=a 07<=0.48409$ ^ $0.20408<=a 08<=0.525$ ^ $0.15<=a 09<=0.46939 \wedge$
$0.22273<=a 10<=0.44898$ ^ $0.13753<=a 11<=0.30612$ ^ $0.59184<=a 12<=0.59565$
^ $-0.07727<=a 13<=0.12245$ ^ $0.44545<=a 14<=0.55102$ ^ $\mathrm{alf=0.0}$ ^
$0.48636<=a 16<=0.5102$ ^ $-0.27491<=a 17<=-0.06122$ ^ $0.42014<=a 18<=0.55102$
^ $-0.56136<=a 19<=-0.20408$ ^ $0.36818<=a 20<=0.55102$ ^ $-0.36591<=a 21<=-$
0.28571 ^ $0.18864<=a 22<=0.44898{ }^{\wedge}-0.40533<=a 23<=-0.28571$ ^
$0.07588<=a 24<=0.32653 \wedge-0.61224<=a 25<=-0.38483$
$0.03229<=a 26<=0.22449 \wedge^{\wedge}-0.46579<=a 27<=-0.33942$
$0.12486<=a 28<=0.14895{ }^{\wedge}-0.59184<=a 29<=-0.2754$
$0.19714<=a 30<=0.18367 \wedge-0.34694<=a 31<=-0.19962 \wedge-0.24648<=a 32<=0.0 \wedge$ $-0.26531<=a 33<=-0.11894$ ^ $-0.27218<=a 34<=-0.2449$ (2)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=0.0 ^ a04=0.0 ^ a05=0.0 ^ $a 06=0.0$ ^ $a 07=0.0$ ^ $\mathrm{a} 08=0.0$ ^ $\mathrm{a} 09=-1.0$ ^ $\mathrm{a} 10=1.0 \wedge \mathrm{all=0.0}$ ^ $\mathrm{a} 12=0.0$ ^ $a 13=1.0$ ^ $a 14=0.37333 \wedge$ a15=-0.12 ^ $a 16=-0.12 \wedge$ a17=0.0 ^ $a 18=0.0$ ^
 ^ $a 26=0.0$ ^ $a 27=1.0$ ^ $a 28=0.22667$ ^ $a 29=0.0$ ^ $a 30=0.0$ ^ $a 31=0.0$ ^ $a 32=0.0$ ^ $a 33=0.0$ ^ $a 34=0.0$ (1)
class b IF : a01=1.0 ^ a02=0.0 ^ -0.65625<=a03<=1.0 ^
$0.17314<=a 04<=1.0$ ^ $-1.0<=a 05<=0.82332$ ^ $-1.0<=a 06<=1.0$ ^
$1.0<=a 07<=1.0$ ^ $-0.82456<=a 08<=1.0$ ^ $-0.01478<=a 09<=0.87719$
$0.06811<=a 10<=1.0$ ^ $-0.66886<=a 11<=1.0$ ^ $-0.15194<=a 12<=1.0$ ^
$0.05921<=a 13<=0.47368{ }^{\wedge}-0.09852<=a 14<=0.58772$ ^ $0.0106<=a 15<=0.56347$
^ $-0.24206<=a 16<=0.38869 \wedge-0.51535<=a 17<=0.72807 \wedge-1.0<=a 18<=0.95122$
^ $-0.50998<=a 19<=0.46429 \wedge-0.375<=a 20<=0.84922$ ^ $-0.102<=a 21<=0.50464$
^ $-0.4386<=a 22<=0.38803 \wedge-1.0<=a 23<=0.11213$ ^ $-0.6161<=a 24<=1.0$ ^ -
$0.91574<=a 25<=1.0 \wedge-1.0<=a 26<=0.8071$ ^ $-0.34146<=a 27<=1.0$
$1.0<=a 28<=0.88248$ ^ $-1.0<=a 29<=1.0$ ^ $-0.24561<=a 30<=1.0$ ^
$1.0<=a 31<=0.35088$ ^ $-1.0<=a 32<=0.5582$ ^ $-0.19066<=a 33<=1.0$ ^ -
$0.10837<=a 34<=1.0$ (12)
class b IF : a01=1.0 ^ a02=0.0 ^ -0.26667<=a03<=1.0 ^
$1.0<=a 04<=0.4 \wedge-1.0<=a 05<=1.0 \wedge-1.0<=a 06<=1.0 \wedge-1.0<=a 07<=1.0 \wedge$ $1.0<=a 08<=1.0 \wedge^{\wedge}-0.07759<=a 09<=1.0 \wedge-1.0<=a 10<=1.0 \wedge-1.0<=a 11<=1.0$ ^ $-1.0<=a 12<=1.0 \wedge-1.0<=a 13<=0.34848 \wedge-1.0<=a 14<=0.63966 \wedge$
$1.0<=a 15<=0.0 \wedge-0.97515<=a 16<=1.0 \wedge-0.37681<=a 17<=0.95313 \wedge$
$1.0<=a 18<=1.0$ ^ $-1.0<=a 19<=1.0 \wedge-1.0<=a 20<=1.0 \wedge-0.99219<=a 21<=1.0 \wedge$
$-1.0<=a 22<=1.0$ ^ $-1.0<=a 23<=0.05136$ ^ $-1.0<=a 24<=0.90625$
$1.0<=a 25<=1.0$ ^ $-1.0<=a 26<=0.9625$ ^ $-0.20468<=a 27<=1.0$ ^
$1.0<=a 28<=1.0 \wedge-1.0<=a 29<=1.0 \wedge-1.0<=a 30<=0.67708 \wedge-1.0<=a 31<=1.0 \wedge$ $-1.0<=a 32<=1.0 \wedge-1.0<=a 33<=1.5 \mathrm{E}-4 \wedge-0.9375<=a 34<=1.0 \quad$ (24) class b IF : $0.0<=a 01<=1.0$ ^ $a 02=0.0$ ^ $-1.0<=a 03<=1.0$ ^
$1.0<=a 04<=-0.35625$ ^ $0.0<=a 05<=1.0 \wedge 0.0<=a 06<=1.0 \wedge-1.0<=a 07<=1.0$ ^ $-1.0<=a 08<=1.0 \wedge-1.0<=a 09<=1.0 \wedge-1.0<=a 10<=1.0 \wedge 0.0<=a 11<=1.0 \wedge$ $1.0<=a 12<=1.0 \wedge-1.0<=a 13<=1.0 \wedge-1.0<=a 14<=1.0 \wedge-1.0<=a 15<=1.0 \wedge$ $0.55<=a 16<=1.0 \wedge-1.0<=a 17<=1.0 \wedge-1.0<=a 18<=1.0 \wedge-1.0<=a 19<=1.0 \wedge$ $1.0<=a 20<=1.0 \wedge-1.0<=a 21<=1.0 \wedge-1.0<=a 22<=1.0 \wedge 0.08333<=a 23<=1.0$ ^ $-1.0<=a 24<=0.62349 \wedge-1.0<=a 25<=1.0 \wedge-1.0<=a 26<=1.0 \wedge$ a $27=1.0$ ^ $1.0<=a 28<=1.0 \wedge-1.0<=a 29<=1.0 \wedge-1.0<=a 30<=0.18854 \wedge-1.0<=a 31<=1.0 \wedge$ $0.0<=a 32<=1.0$ ^ $a 33=1.0$ ^ $-1.0<=a 34<=1.0$ (8)
class b IF : $0.0<=a 01<=1.0 \wedge$ a02 $=0.0 \wedge$ - $1.0<=a 03<=1.0 \wedge$ -
$1.0<=a 04<=1.0 \wedge-1.0<=a 05<=1.0 \wedge-1.0<=a 06<=1.0 \wedge-1.0<=a 07<=1.0 \wedge$ $1.0<=a 08<=1.0 \wedge-1.0<=a 09<=1.0 \wedge-1.0<=a 10<=1.0 \wedge-1.0<=a 11<=1.0 \wedge$ $1.0<=a 12<=1.0 \wedge-1.0<=a 13<=1.0 \wedge-1.0<=a 14<=1.0 \wedge-1.0<=a 15<=1.0 \wedge$ $\mathrm{a} 16=-1.0^{\wedge}-1.0<=a 17<=1.0^{\wedge}-1.0<=a 18<=1.0 \wedge-1.0<=a 19<=1.0 \wedge$ ^ $1.0<=a 20<=1.0 \wedge-1.0<=a 21<=1.0 \wedge-1.0<=a 22<=1.0 \wedge-1.0<=a 23<=1.0 \wedge$ $1.0<=a 24<=1.0 \wedge-1.0<=a 25<=1.0 \wedge-1.0<=a 26<=1.0 \wedge-0.19149<=a 27<=1.0 \wedge$ $-1.0<=a 28<=1.0 \wedge-1.0<=a 29<=1.0 \wedge-1.0<=a 30<=1.0 \wedge-1.0<=a 31<=1.0$ $1.0<=a 32<=1.0 \wedge-1.0<=a 33<=1.0 \wedge-1.0<=a 34<=1.0 \quad$ (20)
class b IF : a01=0.0 ^ a02=0.0 ^ $0.0<=a 03<=1.0$ ^ $0.0<=a 04<=1.0$ $-1.0<=a 05<=1.0 \wedge-1.0<=a 06<=1.0 \wedge-1.0<=a 07<=1.0$ ^ $-1.0<=a 08<=1.0$ ^ $1.0<=a 09<=1.0 \wedge-1.0<=a 10<=1.0 \wedge-1.0<=a 11<=1.0 \wedge-1.0<=a 12<=1.0$ ^ $1.0<=a 13<=1.0 \wedge-1.0<=a 14<=1.0 \wedge-1.0<=a 15<=1.0 \wedge-0.3125<=a 16<=1.0$ ^ $-1.0<=a 17<=1.0 \wedge-1.0<=a 18<=1.0 \wedge-1.0<=a 19<=1.0 \wedge-1.0<=a 20<=1.0 \wedge$ $1.0<=a 21<=1.0 \wedge-1.0<=a 22<=1.0 \wedge-1.0<=a 23<=1.0 \wedge 0.0<=a 24<=1.0 \wedge$ $1.0<=a 25<=1.0 \wedge-1.0<=a 26<=1.0 \wedge-1.0<=a 27<=1.0 \wedge-1.0<=a 28<=1.0 \wedge$ $1.0<=a 29<=0.0 \wedge-1.0<=a 30<=1.0 \wedge-1.0<=a 31<=1.0 \wedge-1.0<=a 32<=1.0 \wedge$ $1.0<=a 33<=1.0$ ^ $-1.0<=a 34<=1.0 \quad$ (15)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=0.0 ^ a04=0.0 ^ a05=0.0 ^ $\mathrm{a} 06=0.0$ ^ $\mathrm{a} 07=0.0$ ^ $\mathrm{a} 08=0.0$ ^ $\mathrm{a} 09=0.0$ ^ $\mathrm{a} 10=0.0$ ^ $\mathrm{all=0.0}$ ^ $\mathrm{a} 12=0.0$ ^ $\mathrm{a} 13=-1.0$ ^ $\mathrm{a} 14=1.0$ ^ $\mathrm{a} 15=1.0$ ^ $\mathrm{a} 16=0.55172$ ^ $\mathrm{a} 17=0.0$ ^ $\mathrm{a} 18=0.0$ ^ $\mathrm{a} 19=0.0$ ^ $\mathrm{a} 20=0.0$ ^ $\mathrm{a} 21=0.0$ ^ $\mathrm{a} 22=0.0$ ^ $\mathrm{a} 23=0.0$ ^ $\mathrm{a} 24=0.0$ ^ $\mathrm{a} 25=0.0$ ^ $\mathrm{a} 26=0.0$ ^ $\mathrm{a} 27=1.0$ ^ $\mathrm{a} 28=1.0$ ^ $\mathrm{a} 29=0.0$ ^ $\mathrm{a} 30=0.0$ ^ $\mathrm{a} 31=0.0$ ^ $\mathrm{a} 32=0.0$ ^ a33=0.0 ^ a34=0.0 (1)
class b IF : a01=1.0 ^ a02=0.0 ^ 0.0<=a03<=1.0 ^ -
$0.05<=a 04<=0.40332$ ^ $0.82809<=a 05<=1.0^{\wedge} 0.03462<=a 06<=0.80521$ ^ $0.0<=a 07<=1.0$ ^ $0.0<=a 08<=0.72727$ ^ $0.10991<=a 09<=0.8401$ $1.0<=a 10<=-0.05909$ ^ $0.0<=a 11<=0.97311$ ^ $-0.16818<=a 12<=0.11147$ $0.0<=a 13<=0.95824$ ^ $-0.85727<=a 14<=0.5364 \wedge-1.0<=a 15<=0.91962$ ^ $0.22414<=a 16<=1.0$ ^ $-0.55711<=a 17<=0.95452 \wedge-0.83297<=a 18<=0.21818$ ^ $0.66818<=a 19<=1.0$ ^ $0.1<=a 20<=0.63147$ ^ $0.0<=a 21<=1.0$ ^ $0.69594<=a 22<=0.16371 \wedge 0.53448<=a 23<=0.98636 \wedge^{\wedge}-1.0<=a 24<=0.35668 \wedge$ $0.90302<=a 25<=0.57273$ ^ $-0.30063<=a 26<=0.44828$ ^ $0.48867<=a 27<=1.0$ ^ $1.0<=a 28<=0.17076$ ^ $-1.0<=a 29<=0.62958 \wedge 0.08182<=a 30<=0.81573$ ^ $0.0<=a 31<=0.87757 \wedge 0.0<=a 32<=0.81007 \wedge 0.0<=a 33<=1.0$ ^ $0.0<=a 34<=1.0$ (4)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=0.42708 ^ a04=-0.5 ^ a05=0.0 ^ $\mathrm{a} 06=0.0$ ^ $\mathrm{a} 07=0.0$ ^ $\mathrm{a} 08=0.0$ ^ $\mathrm{a} 09=0.46458$ ^ $\mathrm{a} 10=0.51042$ $\mathrm{a} 11=0.58958$ ^ $\mathrm{a} 12=0.02083$ ^ $\mathrm{a} 13=0.0 \wedge \mathrm{a} 14=0.0$ ^ $\mathrm{a} 15=0.0$ ^ $\mathrm{a} 16=0.0$ ^ $\mathrm{a} 17=0.16458$ ^ $\mathrm{a} 18=-0.45417$ ^ $\mathrm{a} 19=0.59167$ ^ $\mathrm{a} 20=-0.18333$ ^ $\mathrm{a} 21=0.0$ ^ $a 22=0.0 \wedge$ a23 $=0.0 \wedge \mathrm{a} 24=0.0 \wedge \mathrm{a} 25=0.9875 \wedge \mathrm{a} 26=-0.40833 \wedge \mathrm{a} 27=-1.0 \wedge$ $\mathrm{a} 28=-1.0$ ^ $\mathrm{a} 29=-0.27917$ ^ $\mathrm{a} 30=-0.75625$ ^ $\mathrm{a} 31=0.0$ ^ $\mathrm{a} 32=0.0$ ^ $\mathrm{a} 33=0.0$ ^ a34=0.0 (1)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=0.68729 ^ a04=1.0 ^ $\mathrm{a} 05=0.91973$ ^ $\mathrm{a} 06=-0.76087$ ^ $\mathrm{a} 07=0.81773$ ^ $\mathrm{a} 08=0.04348$ ^ $\mathrm{a} 09=0.76087$ ^ $a 10=0.10702$ ^ $a 11=0.86789$ ^ $a 12=0.73746$ ^ $a 13=0.70067$ ^ $a 14=0.18227$ ^ $\mathrm{a} 15=0.7592$ ^ $\mathrm{a} 16=0.13712$ ^ $\mathrm{a} 17=0.93478$ ^ $\mathrm{a} 18=-0.25084$ ^ $\mathrm{a} 19=0.70736$ ^ $\mathrm{a} 20=0.18729$ ^ $\mathrm{a} 21=0.64883$ ^ $\mathrm{a} 22=0.24582$ ^ $\mathrm{a} 23=0.60201$ ^ $\mathrm{a} 24=0.77425$ ^ $\mathrm{a} 25=1.0$ ^ $\mathrm{a} 26=-0.53846$ ^ $\mathrm{a} 27=0.89262$ ^ $\mathrm{a} 28=0.22216$ ^ $\mathrm{a} 29=0.7107$ ^ $\mathrm{a} 30=0.53846$ ^ $\mathrm{a} 31=1.0$ ^ $\mathrm{a} 32=-0.06522 \wedge \mathrm{a} 33=0.56522$ ^ $\mathrm{a} 34=0.23913$ (1)
class b IF : a01=0.0 ^ a02=0.0 ^ a03=1.0 ^ a04=1.0 ^ a05=1.0 ^ $\mathrm{a} 06=-1.0$ ^ $\mathrm{a} 07=1.0$ ^ $\mathrm{a} 08=1.0$ ^ $\mathrm{a} 09=1.0$ ^ $\mathrm{a} 10=1.0$ ^ $\mathrm{a} 11=1.0$ ^ $\mathrm{a} 12=1.0$ ^ $\mathrm{a} 13=1.0$ ^ $\mathrm{a} 14=-1.0$ ^ $\mathrm{a} 15=1.0$ ^ $\mathrm{a} 16=1.0$ ^ $\mathrm{a} 17=1.0$ ^ $\mathrm{a} 18=-1.0$ ^ $\mathrm{a} 19=1.0$ ^ $\mathrm{a} 20=-1.0$ ^ $\mathrm{a} 21=1.0$ ^ $\mathrm{a} 22=1.0$ ^ $\mathrm{a} 23=1.0$ ^ $\mathrm{a} 24=1.0$ ^ $\mathrm{a} 25=1.0$ ^ $\mathrm{a} 26=-$ 1.0 ^ $\mathrm{a} 27=1.0$ ^ $\mathrm{a} 28=1.0$ ^ $\mathrm{a} 29=1.0$ ^ $\mathrm{a} 30=1.0$ ^ $\mathrm{a} 31=1.0$ ^ $\mathrm{a} 32=1.0$ ^ $a 33=1.0$ ^ $\mathrm{a} 34=1.0$ (1)
class b IF : 0.0<=a01<=1.0 ^ a02=0.0 ^ a03=-1.0 ^ - $1.0<=a 04<=1.0$ ^ $-1.0<=a 05<=1.0$ ^ $-1.0<=a 06<=0.15244$ ^ $-1.0<=a 07<=0.28354 \wedge$ $0.70984<=a 08<=1.0 \wedge-1.0<=a 09<=1.0 \wedge-0.375<=a 10<=1.0 \wedge-1.0<=a 11<=1.0$ ^ $-1.0<=a 12<=1.0 \wedge-1.0<=a 13<=1.0 \wedge-1.0<=a 14<=1.0 \wedge-1.0<=a 15<=1.0 \wedge$ $-0.23476<=a 16<=1.0 \wedge-1.0<=a 17<=1.0 \wedge-1.0<=a 18<=0.0 \wedge-1.0<=a 19<=1.0$ ^ $-1.0<=a 20<=1.0$ ^ $-1.0<=a 21<=1.0 \wedge-1.0<=a 22<=1.0 \wedge-1.0<=a 23<=1.0$ ^ $-1.0<=a 24<=1.0 \wedge-1.0<=a 25<=1.0 \wedge-1.0<=a 26<=1.0 \wedge-1.0<=a 27<=1.0$ ^ $1.0<=a 28<=1.0 \wedge-1.0<=a 29<=1.0 \wedge-1.0<=a 30<=1.0 \wedge-1.0<=a 31<=1.0 \wedge$ $1.0<=a 32<=1.0 \wedge-1.0<=a 33<=0.14939 \wedge-1.0<=a 34<=1.0$ (9)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=-0.00641 ^ a04=-0.5 ^ $\mathrm{a} 05=0.0$ ^ $\mathrm{a} 06=0.0$ ^ $\mathrm{a} 07=-0.01923$ ^ $\mathrm{a} 08=1.0$ ^ $\mathrm{a} 09=0.0$ ^ $\mathrm{a} 10=0.0$ ^ $\mathrm{a} 11=0.0$ ^ $\mathrm{a} 12=0.0$ ^ $\mathrm{a} 13=0.0$ ^ $\mathrm{a} 14=0.0$ ^ $\mathrm{a} 15=0.0$ ^ $\mathrm{a} 16=0.0$ ^ $\mathrm{a} 17=0.0$ ^ $a 18=0.0$ ^ $\mathrm{a} 19=0.3141$ ^ $\mathrm{a} 20=0.92949$ ^ $\mathrm{a} 21=-0.35256$ ^ $\mathrm{a} 22=0.74359$ ^ $\mathrm{a} 23=-0.34615$ ^ $\mathrm{a} 24=-0.80769 \wedge \mathrm{a} 25=0.0 \wedge \mathrm{a} 26=0.0 \wedge \mathrm{a} 27=-0.61538$ ^ $\mathrm{a} 28=-$ 0.51282 ^ $\mathrm{a} 29=0.0$ ^ $\mathrm{a} 30=0.0$ ^ $\mathrm{a} 31=0.0$ ^ $\mathrm{a} 32=0.0$ ^ $\mathrm{a} 33=0.0$ ^ $\mathrm{a} 34=0.0$ (1)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=0.0 ^ a04=0.0 ^ a05=0.0 ^ $\mathrm{a} 06=0.0$ ^ $\mathrm{a} 07=0.0$ ^ $\mathrm{a} 08=0.0$ ^ $\mathrm{a} 09=-0.85$ ^ $\mathrm{a} 10=-1.0$ ^ $\mathrm{a} 11=0.0$ ^ $\mathrm{a} 12=0.0$ ^ $\mathrm{a} 13=1.0$ ^ $\mathrm{a} 14=-1.0$ ^ $\mathrm{a} 15=0.0$ ^ $\mathrm{a} 16=0.0$ ^ $\mathrm{a} 17=-1.0$ ^ $\mathrm{a} 18=-1.0$ ^ $\mathrm{a} 19=-$ $1.0 \wedge$ a20 $=-1.0$ ^ $\mathrm{a} 21=1.0 \wedge \mathrm{a} 22=-1.0 \wedge \mathrm{a} 23=-0.6 \wedge \mathrm{a} 24=-1.0$ ^ $\mathrm{a} 25=1.0$ ^ $\mathrm{a} 26=1.0$ ^ $\mathrm{a} 27=-1.0$ ^ $\mathrm{a} 28=-0.2$ ^ $\mathrm{a} 29=1.0$ ^ $\mathrm{a} 30=-1.0$ ^ $\mathrm{a} 31=0.0$ ^ $\mathrm{a} 32=1.0$ ^ $\mathrm{a} 33=0.0$ ^ $\mathrm{a} 34=0.0$ (1)
class b IF : a01=0.0 ^ a02=0.0 ^ a03=0.0 ^ a04=0.0 ^ a05=0.0 ^ $a 06=0.0$ ^ $\mathrm{a} 07=0.0$ ^ $\mathrm{a} 08=0.0$ ^ $\mathrm{a} 09=0.0$ ^ $\mathrm{a} 10=0.0$ ^ $\mathrm{all=0.0}$ ^ $\mathrm{al2=0.0}$ ^ $a 13=1.0 \wedge$ a14=1.0 ^ $a 15=1.0 \wedge$ a16=1.0 ^ $a 17=1.0 \wedge$ a18=-1.0 ^ a19=0.0 ^ $a 20=0.0 \wedge$ a21=1.0 ^ $\mathrm{a} 22=1.0 \wedge \mathrm{a} 23=1.0 \wedge \mathrm{a} 24=-1.0 \wedge \mathrm{a} 25=1.0$ ^ $\mathrm{a} 26=1.0 \wedge$ $a 27=1.0$ ^ $a 28=0.0$ ^ $\mathrm{a} 29=1.0 \wedge \mathrm{a} 30=1.0$ ^ $\mathrm{a} 31=1.0 \wedge \mathrm{a} 32=-1.0$ ^ $\mathrm{a} 33=0.0$ ^ a34=0.0 (1)
class g IF : a01=1.0 ^ $\mathrm{a} 02=0.0$ ^ $\mathrm{a} 03=0.64947$ ^ $\mathrm{a} 04=-0.07896$ ^
$\mathrm{a} 05=0.58264$ ^ $\mathrm{a} 06=-0.1438$ ^ $\mathrm{a} 07=-0.13129$ ^ $\mathrm{a} 08=-0.21384$ ^ $\mathrm{a} 09=0.29796$ ^ $\mathrm{a} 10=0.04403$ ^ $\mathrm{a} 11=0.38096$ ^ $\mathrm{a} 12=-0.26339$ ^ $\mathrm{a} 13=0.28931$ ^ $\mathrm{a} 14=-$ 0.31997 ^ $\mathrm{a} 15=0.03459$ ^ $\mathrm{a} 16=-0.18947$ ^ $\mathrm{a} 17=0.20269$ ^ $\mathrm{a} 18=-0.29441$ $\mathrm{a} 19=0.15196 \wedge$ a20 $=-0.29052 \wedge$ a21=0.09513 ^ $\mathrm{a} 22=-0.31525$ ^ $\mathrm{a} 23=0.06556$ ^ $\mathrm{a} 24=-0.26795$ ^ $\mathrm{a} 25=0.03004$ ^ $\mathrm{a} 26=-0.25124$ ^ $\mathrm{a} 27=-4.6 \mathrm{E}-4$ ^ $\mathrm{a} 28=-$ 0.2321 ^ $a 29=-0.02612$ ^ $a 30=-0.21129$ ^ $a 31=-0.04717$ ^ $a 32=-0.1895$ $a 33=0.01336$ ^ $a 34=-0.27201$ (1)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=1.0 ^ a04=1.0 ^ a05=0.0 ^ $\mathrm{a} 06=0.0$ ^ $\mathrm{a} 07=1.0$ ^ $\mathrm{a} 08=-1.0 \wedge \mathrm{a} 09=-1.0$ ^ $\mathrm{a} 10=-1.0$ ^ $\mathrm{a} 11=1.0$ ^ $\mathrm{a} 12=1.0$ ^ $a 13=1.0$ ^ $a 14=-1.0 \wedge$ al5=0.0 ^ $a 16=0.0 \wedge$ a17=1.0 ^ $a 18=-1.0$ ^ $a 19=1.0$ ^ $a 20=1.0$ ^ $a 21=0.0$ ^ $a 22=0.0 \wedge$ a23=1.0 ^ $a 24=-1.0 \wedge$ a25=-1.0 ^ $\mathrm{a} 26=-1.0$ ^ $\mathrm{a} 27=1.0$ ^ $\mathrm{a} 28=1.0$ ^ $\mathrm{a} 29=-1.0$ ^ $\mathrm{a} 30=1.0$ ^ $\mathrm{a} 31=-1.0$ ^ $\mathrm{a} 32=1.0$ ^ $\mathrm{a} 33=0.0$ ^ $\mathrm{a} 34=0.0$ (1)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=-1.0 ^ a04=-1.0 ^ a05=0.50694 ^ $\mathrm{a} 06=1.0$ ^ $\mathrm{a} 07=1.0$ ^ $\mathrm{a} 08=-1.0$ ^ $\mathrm{a} 09=1.0$ ^ $\mathrm{a} 10=0.53819$ ^ $\mathrm{a} 11=0.0$ ^ $\mathrm{a} 12=0.0$ ^ $\mathrm{a} 13=0.23958$ ^ $\mathrm{a} 14=-1.0$ ^ $\mathrm{a} 15=1.0$ ^ $\mathrm{a} 16=1.0$ ^ $\mathrm{a} 17=0.0$ ^ $\mathrm{a} 18=0.0$ ^ $\mathrm{a} 19=1.0$ ^ $\mathrm{a} 20=1.0$ ^ $\mathrm{a} 21=1.0$ ^ $\mathrm{a} 22=1.0$ ^ $\mathrm{a} 23=0.0$ ^ $\mathrm{a} 24=0.0$ ^ $\mathrm{a} 25=-0.71528$ ^ $\mathrm{a} 26=1.0$ ^ $\mathrm{a} 27=0.33333$ ^ $\mathrm{a} 28=-1.0$ ^ $\mathrm{a} 29=1.0$ ^ $a 30=-1.0 \wedge$ a31=0.69792 ^ $\mathrm{a} 32=-1.0 \wedge$ a33=0.47569 ^ $\mathrm{a} 34=1.0$ (1) class b IF : a01=1.0 ^ a02=0.0 ^ 0.01975<=a03<=0.1859 $0.16667<=\mathrm{a} 04<=0.00705$ ^ $0.0<=\mathrm{a} 05<=0.0409$ ^ $-0.00846<=\mathrm{a} 06<=0.0$ $0.0<=a 07<=0.02116$ ^ $0.0<=a 08<=0.01128$ ^ $0.0<=a 09<=0.01128$ $0.0<=a 10<=0.04372$ ^ $0.0<=a 11<=0.00282$ ^ $0.0<=a 12<=0.00141$ ^ $0.01975<=a 13<=0.11538{ }^{\wedge}-0.19071<=a 14<=-0.03103 \wedge-0.01975<=a 15<=0.0 \wedge$ $0.0<=a 16<=0.06065$ ^ $-0.0409<=a 17<=0.0$ ^ $0.0<=a 18<=0.0268$ $0.02398<=a 19<=0.0$ ^ $-0.00423<=a 20<=0.0$ ^ $0.0<=a 21<=0.04372$ $0.02539<=a 22<=0.0$ ^ $-0.05128<=a 23<=0.01834$ ^ $-0.06571<=a 24<=0.0$ ^ $0.0<=a 25<=0.07853$ ^ $-0.01269<=a 26<=0.08974$ ^ $0.01834<=a 27<=0.17308$ ^ $0.10897<=a 28<=-0.01128$ ^ $0.00564<=a 29<=0.125$ ^ $-0.01551<=a 30<=0.09615$ ^ $-0.01693<=a 31<=0.02564$ ^ $-0.04808<=a 32<=-0.02398$ ^ $0.00705<=a 33<=0.16827$ ^ $0.0<=a 34<=0.19551$ (2)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=0.62121 ^ a04=-0.63636 $\mathrm{a} 05=0.0$ ^ $\mathrm{a} 06=0.0$ ^ $\mathrm{a} 07=0.0$ ^ $\mathrm{a} 08=0.0$ ^ $\mathrm{a} 09=0.3447$ ^ $\mathrm{a} 10=0.28788$ ^ $\mathrm{a} 11=0.42803$ ^ $\mathrm{a} 12=0.39394$ ^ $\mathrm{a} 13=-0.07576$ ^ $\mathrm{a} 14=0.51894$ ^ $\mathrm{a} 15=0.36364$ ^ $\mathrm{a} 16=0.31439$ ^ $\mathrm{a} 17=-0.53788$ ^ $\mathrm{a} 18=0.32955$ ^ $\mathrm{a} 19=0.12121$ ^ $\mathrm{a} 20=-0.14773$ ^ $\mathrm{a} 21=0.01894$ ^ $\mathrm{a} 22=-0.53409$ ^ $\mathrm{a} 23=-0.57576$ ^ $\mathrm{a} 24=0.17803$ ^ $\mathrm{a} 25=0.29167$ ^ $\mathrm{a} 26=-0.27273$ ^ $\mathrm{a} 27=0.25758$ ^ $\mathrm{a} 28=-0.57576$ ^ $229=0.43182$ ^ $\mathrm{a} 30=0.24242$ ^ $\mathrm{a} 31=0.18182$ ^ $\mathrm{a} 32=-0.02273$ ^ $\mathrm{a} 33=0.17045$ ^ $\mathrm{a} 34=-$ 0.41667 (1)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=1.0 ^ a04=1.0 ^ a05=1.0 ^ $\mathrm{a} 06=0.5125$ ^ $\mathrm{a} 07=0.625$ ^ $\mathrm{a} 08=-1.0$ ^ $\mathrm{a} 09=1.0$ ^ $\mathrm{a} 10=1.0$ ^ $\mathrm{a} 11=0.025$ ^ $a 12=0.03125$ ^ $a 13=1.0 \wedge$ a14=1.0 ^ a15=0.0 ^ a16=0.0 ^ a17=1.0 ^ a18=1.0 ^ $\mathrm{a} 19=1.0$ ^ $\mathrm{a} 20=1.0$ ^ $\mathrm{a} 21=1.0$ ^ $\mathrm{a} 22=1.0$ ^ $\mathrm{a} 23=0.3125$ ^ $\mathrm{a} 24=1.0$ ^ $\mathrm{a} 25=1.0$ ^ $\mathrm{a} 26=1.0$ ^ $\mathrm{a} 27=1.0$ ^ $\mathrm{a} 28=1.0$ ^ $\mathrm{a} 29=1.0$ ^ $\mathrm{a} 30=1.0$ ^ $\mathrm{a} 31=-$ 0.94375 ^ $a 32=1.0$ ^ $a 33=0.0$ ^ $a 34=0.0$ (1)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=1.0 ^ a04=-1.0 ^ a05=1.0 ^ $a 06=1.0$ ^ $a 07=-1.0$ ^ $\mathrm{a} 08=1.0 \wedge \mathrm{a} 09=1.0$ ^ $\mathrm{a} 10=-1.0 \wedge \mathrm{a} 11=1.0$ ^ $\mathrm{a} 12=-1.0$ ^ $a 13=-1.0 \wedge$ a14=-1.0 ^ $a 15=-1.0 \wedge$ a16=1.0 ^ $a 17=1.0 \wedge$ a18=1.0 ^ $\mathrm{a} 19=1.0$ ^ $\mathrm{a} 20=1.0$ ^ $\mathrm{a} 21=-1.0$ ^ $\mathrm{a} 22=1.0$ ^ $\mathrm{a} 23=1.0$ ^ $\mathrm{a} 24=-1.0$ ^ $\mathrm{a} 25=1.0$
^ $\mathrm{a} 26=-1.0$ ^ $\mathrm{a} 27=1.0$ ^ $\mathrm{a} 28=1.0$ ^ $\mathrm{a} 29=1.0$ ^ $\mathrm{a} 30=1.0$ ^ $\mathrm{a} 31=-1.0$ ^ $a 32=1.0$ ^ $a 33=-1.0$ ^ $a 34=1.0$ (1)
class b IF : a01=1.0 ^ a02=0.0 ^ 0.39179<=a03<=0.85271 ^ $0.06343<=a 04<=0.05426$ ^ $0.97464<=a 05<=1.0$ ^ $0.04328<=a 06<=0.08069$ $a 07=1.0 \wedge$ a $08=1.0 \wedge 0.35821<=a 09<=0.91473$ ^ $-0.00775<=a 10<=0.15299 \wedge$ $0.54478<=a 11<=0.83721$ ^ $0.03876<=a 12<=0.1306$ ^ $0.61567<=a 13<=1.0$ ^ $0.8209<=a 14<=0.27153$ ^ $0.57836<=a 15<=1.0$ ^ $0.6791<=a 16<=1.0$ ^ $0.66791<=a 17<=0.81395$ ^ $-0.10448<=a 18<=0.04651$ ^ $0.46642<=a 19<=0.90698$ ^ $-0.11567<=a 20<=0.11628$ ^ $0.65574<=a 21<=1.0$ ^ $0.14792<=a 22<=0.5067$ ^ $0.83209<=a 23<=1.0$ ^ $-1.0<=a 24<=0.45522$ ^ $0.47015<=a 25<=0.8062$ ^ $0.03876<=a 26<=0.16418$ ^ $0.49309<=a 27<=1.0$ ^ $0.1463<=a 28<=0.71613$ ^ $0.32463<=a 29<=0.84496 \wedge-0.02612<=a 30<=0.06977$ ^ $0.39118<=a 31<=1.0$ ^ $0.13521<=a 32<=0.87317$ ^ $0.34411<=a 33<=1.0$ ^ $0.12755<=a 34<=1.0$ (2)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=0.39286 ^ a04=0.52381 ^ $\mathrm{a} 05=-0.78824$ ^ $\mathrm{a} 06=0.11342$ ^ $\mathrm{a} 07=-0.16628$ ^ $\mathrm{a} 08=-0.76378$ ^ $\mathrm{a} 09=0.66667$ ^ $\mathrm{a} 10=0.0119$ ^ $\mathrm{a} 11=0.82143$ ^ $\mathrm{a} 12=0.40476$ ^ $\mathrm{a} 13=-0.6723$ ^ $\mathrm{a} 14=0.30729$ ^ $\mathrm{a} 15=-0.34797$ ^ $\mathrm{a} 16=-0.63668$ ^ $\mathrm{a} 17=0.46429$ ^ $\mathrm{a} 18=0.15476$ ^ $\mathrm{a} 19=0.54762$ ^ $\mathrm{a} 20=0.05952$ ^ $\mathrm{a} 21=-0.5183$ ^ $\mathrm{a} 22=0.44961$ ^ $\mathrm{a} 23=-0.47651$ ^ $\mathrm{a} 24=-$ 0.47594 ^ $\mathrm{a} 25=0.32143$ ^ $\mathrm{a} 26=0.70238$ ^ $\mathrm{a} 27=0.51971$ ^ $\mathrm{a} 28=0.38848$ $\mathrm{a} 29=0.57143$ ^ $\mathrm{a} 30=0.39286$ ^ $\mathrm{a} 31=-0.54891$ ^ $\mathrm{a} 32=-0.29915$ ^ $\mathrm{a} 33=0.25441$ ^ a34=-0.55837 (1)
class b IF : $\mathrm{a} 01=1.0$ ^ $\mathrm{a} 02=0.0$ ^ $\mathrm{a} 03=1.0$ ^ $\mathrm{a} 04=-0.05529$ ^ $\mathrm{a} 05=1.0$ ^ $\mathrm{a} 06=-1.0$ ^ $\mathrm{a} 07=0.5$ ^ $\mathrm{a} 08=-0.11111$ ^ $\mathrm{a} 09=0.36111$ ^ $\mathrm{a} 10=-0.22222$ $a 11=1.0 \wedge$ a12 $=-0.25712 \wedge a 13=0.16667 \wedge$ a14=-0.11111 ^ $a 15=1.0 \wedge$ a16=0.3466 ^ $\mathrm{a} 17=1.0$ ^ $\mathrm{a} 18=-0.38853$ ^ $\mathrm{a} 19=1.0$ ^ $\mathrm{a} 20=-0.42862$ ^ $\mathrm{a} 21=0.0$ ^
 ^ $\mathrm{a} 28=-0.57092$ ^ $\mathrm{a} 29=1.0$ ^ $\mathrm{a} 30=-0.27778$ ^ $\mathrm{a} 31=1.0$ ^ $\mathrm{a} 32=-0.63156$ ^ $a 33=1.0$ ^ $a 34=-0.65935$ (1)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=-1.0 ^ a04=-1.0 ^ a05=0.0 ^ $\mathrm{a} 06=0.0$ ^ $\mathrm{a} 07=0.50814{ }^{\wedge} \mathrm{a} 08=-0.78502$ ^ $\mathrm{a} 09=0.60586$ ^ $\mathrm{a} 10=0.32899$ ^ $a 11=-1.0$ ^ $a 12=-0.41368 \wedge 213=0.0$ ^ $a 14=0.0 \wedge$ a15=0.0 ^ $a 16=0.0$ ^ $a 17=1.0$ ^ $a 18=-0.2671$ ^ $a 19=0.36482$ ^ $a 20=-0.63518{ }^{\wedge} \mathrm{a} 21=0.97068$ ^ $\mathrm{a} 22=-1.0 \wedge \mathrm{a} 23=-1.0 \wedge \mathrm{a} 24=-1.0 \wedge \mathrm{a} 25=1.0 \wedge$ a26=-0.59609 ^ $\mathrm{a} 27=-1.0$ ^ $\mathrm{a} 28=-1.0$ ^ $\mathrm{a} 29=-1.0$ ^ $\mathrm{a} 30=-1.0$ ^ $\mathrm{a} 31=1.0$ ^ $\mathrm{a} 32=-1.0$ ^ $\mathrm{a} 33=0.0$ ^ a34=0.0 (1)
class g IF : a01=1.0 ^ a02=0.0 ^ 0.9449<=a03<=1.0 ^ -
$0.57224<=a 04<=-0.49311$ ^ $0.9915<=a 05<=1.0$ ^ $-0.73371<=a 06<=-0.03692 \wedge$ $0.89518<=a 07<=0.98898$ ^ $-0.9745<=a 08<=-0.87052 \wedge 0.90083<=a 09<=1.0$ ^ $0.35818<=a 10<=0.66942$ ^ $a 11=1.0$ ^ $-0.23229<=a 12<=-0.10104$
$0.6289<=a 13<=1.0$ ^ $-0.86402<=a 14<=-0.12493$ ^ $a 15=1.0$ ^ -
$0.57535<=a 16<=-0.15017$ ^ $a 17=1.0$ ^ $-0.79603<=a 18<=-0.17681$
$0.76771<=a 19<=1.0^{\wedge}-0.88952<=a 20<=-0.20491$ ^ $0.96601<=a 21<=1.0$
$1.0<=a 22<=-0.23452 \wedge 0.7012<=a 23<=1.0$ ^ $-0.74896<=a 24<=-0.26571$
$0.61946<=a 25<=1.0 \wedge-0.76904<=a 26<=-0.29852 \wedge 0.53777<=a 27<=1.0$
$0.77986<=a 28<=-0.33304$ ^ $0.8102<=a 29<=1.0$ ^ $-1.0<=a 30<=-0.36931$ ^
a31=1.0 ^ -1.0<=a32<=-0.4074 ^ 0.30445<=a33<=1.0 ^ - $0.76112<=a 34<=-$ 0.44739 (2)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=1.0 ^ a04=-1.0 ^ a05=0.0 ^ $a 06=0.0$ ^ $\mathrm{a} 07=0.77941$ ^ $\mathrm{a} 08=-0.99265$ ^ $\mathrm{a} 09=0.80882$ ^ $\mathrm{a} 10=0.55147$ ^
$\mathrm{a} 11=-0.41912$ ^ $\mathrm{a} 12=-0.94853$ ^ $\mathrm{a} 13=0.0$ ^ $\mathrm{a} 14=0.0$ ^ $\mathrm{a} 15=0.0$ ^ $\mathrm{a} 16=0.0$ ^ $\mathrm{a} 17=0.72059$ ^ $\mathrm{a} 18=-0.77206$ ^ $\mathrm{a} 19=0.73529 \wedge$ a20 $=-0.60294 \wedge$ a21=0.0 $\mathrm{a} 22=0.0 \wedge \mathrm{a} 23=0.18382 \wedge \mathrm{a} 24=-1.0 \wedge \mathrm{a} 25=-1.0 \wedge \mathrm{a} 26=-1.0 \wedge \mathrm{a} 27=-1.0 \wedge$ $\mathrm{a} 28=-1.0 \wedge \mathrm{a} 29=1.0 \wedge \mathrm{a} 30=-1.0 \wedge \mathrm{a} 31=1.0$ ^ $\mathrm{a} 32=-1.0 \wedge \mathrm{a} 33=0.0$ ^ $\mathrm{a} 34=0.0$ (1)
class b IF : a01=0.0 ^ a02=0.0 ^ a03=1.0 ^ a04=1.0 ^ a05=1.0 ^ $a 06=-1.0 \wedge$ a07=1.0 ^ $a 08=1.0 \wedge$ a09=-1.0 ^ a10=1.0 ^ all=0.0 ^ a12=0.0 \wedge a13=1.0 ^ $a 14=1.0 \wedge$ a15=0.0 ^ $a 16=0.0 \wedge$ a17=0.0 ^ $a 18=0.0 \wedge$ a19=-1.0 ^ $\mathrm{a} 20=1.0$ ^ $\mathrm{a} 21=-1.0$ ^ $\mathrm{a} 22=1.0$ ^ $\mathrm{a} 23=1.0 \wedge \mathrm{a} 24=1.0 \wedge \mathrm{a} 25=1.0$ ^ $\mathrm{a} 26=-$ 1.0 ^ $\mathrm{a} 27=1.0$ ^ $\mathrm{a} 28=1.0$ ^ $\mathrm{a} 29=1.0$ ^ $\mathrm{a} 30=1.0$ ^ $\mathrm{a} 31=1.0$ ^ $\mathrm{a} 32=-1.0$ ^ a33=-1.0 ^ a34=1.0 (1)
class b IF : a01=1.0 ^ a02=0.0 ^ a03=0.84783 ^ a04=0.10598 ^ $\mathrm{a} 05=1.0$ ^ $\mathrm{a} 06=0.3913$ ^ $\mathrm{a} 07=1.0$ ^ $\mathrm{a} 08=-1.0$ ^ $\mathrm{a} 09=0.66938$ ^ $\mathrm{a} 10=0.08424$ ^ $\mathrm{a} 11=1.0$ ^ $\mathrm{a} 12=0.27038$ ^ $\mathrm{a} 13=1.0$ ^ $\mathrm{a} 14=0.60598$ ^ $\mathrm{a} 15=1.0$ ^ $\mathrm{a} 16=0.35507$ ^ $\mathrm{a} 17=1.0$ ^ $\mathrm{a} 18=0.02672$ ^ $\mathrm{a} 19=0.58424$ ^ $\mathrm{a} 20=-0.43025$ ^ $\mathrm{a} 21=1.0$ ^ $\mathrm{a} 22=0.63496$ ^ $\mathrm{a} 23=0.8913$ ^ $\mathrm{a} 24=0.26585$ ^ $\mathrm{a} 25=0.91033$ ^ $\mathrm{a} 26=-$ 0.33333 ^ $\mathrm{a} 27=1.0$ ^ $\mathrm{a} 28=0.15942$ ^ $\mathrm{a} 29=0.37681$ ^ $\mathrm{a} 30=-0.01947$ ^ $\mathrm{a} 31=1.0$ ^ $\mathrm{a} 32=0.22464$ ^ $\mathrm{a} 33=1.0$ ^ $\mathrm{a} 34=0.37409$ (1)

Stat :
class b : 30 exemplar(s) including 11 Hyperrectangle(s) and 19
Single(s).
class g : 20 exemplar(s) including 11 Hyperrectangle(s) and 9 Single(s).

Total : 50 exemplars(s) including 22 Hyperrectangle(s) and 28 Single(s).

Feature weights : [0.17759734278086603 0.0 0.28422530344981234
0.200470421074053360 .311593623460486640 .12840276551920687 0.219132967233509780 .121600235912702180 .14378674108080622 0.080881570384744710 .089833967183611110 .10022173638214034 0.13538059276408898 0.1284052455349774 0.15557387473809003
0.103245385879438240 .100951106499312170 .05702677068353289
0.068240564688836850 .054888010516393720 .15152558322534648
0.048760153132101940 .1416210544841780 .06318951170047418
0.09840202087356970 .038723362799452440 .020232168414620007
0.118384969473096710 .118322518213183150 .06483354853328607
0.182899896626816970 .074647048175379290 .13556091162456377 0.04688331003356788]
$>$
Task 7.1.4 Modify the classifier's parameters. G is number of attempts of generalization, and I is number of rectangles
cls = Classifier(classname="weka.classifiers.rules.NNge", options=["G", "100", "-I", "10"])

Distance Functions For Generalized Exemplars

```
# load the data
instances = loader.load_file("data/weather.numeric.arff")
instances
@relation weather
@attribute outlook {sunny,overcast,rainy}
@attribute temperature numeric
@attribute humidity numeric
@attribute windy {TRUE,FALSE}
@attribute play {yes,no}
@data
sunny, 85, 85,FALSE,no
sunny,80,90,TRUE,no
overcast,83,86,FALSE,yes
rainy,70,96,FALSE,yes
rainy,68,80,FALSE,yes
rainy,65,70,TRUE,no
overcast,64,65,TRUE,yes
sunny,72,95,FALSE, no
sunny,69,70,FALSE,yes
rainy,75,80,FALSE,yes
sunny,75,70,TRUE,yes
overcast,72,90,TRUE,yes
overcast,81,75,FALSE,yes
rainy,71,91,TRUE,no
# set class to be the last attribute
instances.class_index = instances.num_attributes - 1
# build the Nearest-neighbor-like algorithm using non-nested
generalized exemplars
# hyperrectangles that can be viewed as if-then rules
from weka.classifiers import Classifier
cls = Classifier(classname="weka.classifiers.rules.NNge")
cls.build_classifier(instances)
# see the rectangles picture in page 249
cls.description
<bound method OptionHandler.description of
NNGE classifier
Rules generated :
    class no IF : outlook in {rainy} ^ 65.0<=temperature<=71.0 ^
70.0<=humidity<=91.0 ^ windy in {TRUE}
    (2)
```

```
    class yes IF : outlook in {overcast} ^ temperature=72.0 ^
humidity=90.0 ^ windy in {TRUE} (1)
    class yes IF : outlook in {overcast,rainy} ^
68.0<=temperature<=83.0 ^ 75.0<=humidity<=96.0 ^ windy in {FALSE}
    class yes IF : outlook in {sunny,overcast} ^
64.0<=temperature<=75.0 ^ 65.0<=humidity<=70.0 ^ windy in {TRUE,FALSE}
(3)
    class no IF : outlook in {sunny} ^ 72.0<=temperature<=85.0 ^
85.0<=humidity<=95.0 ^ windy in {TRUE,FALSE} (3)
Stat :
    class yes : 3 exemplar(s) including 2 Hyperrectangle(s) and 1
Single(s).
    class no : 2 exemplar(s) including 2 Hyperrectangle(s) and 0
Single(s).
    Total : 5 exemplars(s) including 4 Hyperrectangle(s) and 1
Single(s).
Feature weights : [0.24674981977443894 0.19996253177061085 \(0.218866996519925530 .04812703040826924]\)
>
# classify the last instance
instances.get_instance(instances.num_instances - 1)
# euclidean distance is used if the instance is outside all rectangles
rainy,71,91,TRUE,no
# create a new instance, add it to the dataset, its schema is attached
from weka.core.dataset import Instance
# rainy, 71, 91, True, no
values = [2, 71, 91, 0, 0]
inst = Instance.create_instance(values)
instances.add_instance(inst)
# show the last instance, we just added
instances.get_instance(instances.num_instances - 1)
rainy,71,91,TRUE,yes
# classify the last instance, we just added
cls.classify_instance(
    instances.get_instance(
            instances.num_instances - 1
    )
    )
```


1.0

Task 7.1.5 Query an instance outside the rectangles.

Generalized Distance Functions

7.2 Extending Linear Models

Sources

- SMO, Sourceforge - Implements John Platt's sequential minimal optimization algorithm for training a support vector classifier.

The Maximum Margin Hyperplane

```
# load the data
instances = loader.load_file("data/ionosphere.arff")
# set the class index to be the last attribute
instances.class_index = instances.num_attributes - 1
# build the classifier
# Implements John Platt's sequential minimal optimization algorithm
for training a support vector classifier.
# This implementation globally replaces all missing values
# transforms nominal attributes into binary ones
# normalizes all attributes by default.
from weka.classifiers import Classifier
cls = Classifier(classname="weka.classifiers.functions.SMO")
cls.build_classifier(instances)
cls.description
<bound method OptionHandler.description of SMO
Kernel used:
    Linear Kernel: K(x,y) = <x,y>
Classifier for classes: b, g
BinarySMO
Machine linear: showing attribute weights, not support vectors.
```

```
    2.7284 * (normalized) a01
```

 2.7284 * (normalized) a01
 + 1.2922 * (normalized) a03
+ 1.2922 * (normalized) a03
+ 0.496 * (normalized) a04

```
+ 0.496 * (normalized) a04
```

+	1.25	(normalized)	a05
+	1.0747	* (normalized)	a06
+	1.3562	* (normalized)	a07
+	1.7094	* (normalized)	a08
+	0.662	* (normalized)	a09
+	0.3239	* (normalized)	a10
+	-0.3074	* (normalized)	a11
+	-0.2181	* (normalized)	a12
+	-0.3015	* (normalized)	a13
+	0.5468	* (normalized)	a14
+	0.5205	* (normalized)	a15
+	-0.3385	* (normalized)	a16
+	0.1632	* (normalized)	a17
+	0.1591	* (normalized)	a18
+	-0.3796	* (normalized)	a19
+	0.0701	* (normalized)	a20
+	0.2769	* (normalized)	a21
+	-1.6155	* (normalized)	a22
+	0.9716	* (normalized)	a23
+	0.2532	* (normalized)	a24
+	0.5938	* (normalized)	a25
+	0.4138	* (normalized)	a26
+	-1.5804	* (normalized)	a27
+	0.1973	* (normalized)	a28
+	0.2796	* (normalized)	a29
+	1.1746	* (normalized)	a30
+	0.698	* (normalized)	a31
+	-0.3987	* (normalized)	a32
+	-0.2987	* (normalized)	a33
+	-1.1094	* (normalized)	a34
	7.5956		

Number of kernel evaluations: 35464 (79.52\% cached)
$>$
Task 7.2.1 Apply the code snippet on a dataset of two attributes, and visualize the hyperplane like page 253 of the book

Nonlinear Class Boundaries

Using the kernel in weka's classifiers

```
# load the data
instances = loader.load_file("data/ionosphere.arff")
# set the class to be the last attribute
instances.class_index = instances.num_attributes - 1
```

```
# Build the classifier
# Implements John Platt's sequential minimal optimization algorithm
for training a support vector classifier.
# This implementation globally replaces all missing values
# transforms nominal attributes into binary ones
# normalizes all attributes by default.
from weka.classifiers import Classifier
cls = Classifier(classname="weka.classifiers.functions.SMO",
options=["-K", "weka.classifiers.functions.supportVector.PolyKernel"])
cls.build_classifier(instances)
cls.description
<bound method OptionHandler.description of SMO
Kernel used:
    Linear Kernel: K(x,y) = <x,y>
Classifier for classes: b, g
```


BinarySMO

Machine linear: showing attribute weights, not support vectors.

| | $2.7284 *$ (normalized) | a01 |
| :--- | :--- | :--- | :--- |
| + | $1.2922 *$ (normalized) | a03 |
| + | $0.496 *$ (normalized) | a04 |
| + | $1.25 * *$ (normalized) | a05 |
| + | $1.0747 *$ (normalized) | a06 |
| + | $1.3562 *$ (normalized) | a07 |
| + | $1.7094 *$ (normalized) | a08 |
| + | $0.662 *$ (normalized) | a09 |
| + | $0.3239 *$ (normalized) | a10 |
| + | $-0.3074 *$ (normalized) | a11 |
| + | $-0.2181 *$ (normalized) | a12 |
| + | $-0.3015 *$ (normalized) | a13 |
| + | $0.5468 *$ (normalized) | a14 |
| + | $0.5205 *$ (normalized) | a15 |
| + | $-0.3385 *$ (normalized) | a16 |
| + | $0.1632 *$ (normalized) | a17 |
| + | $0.1591 *$ (normalized) | a18 |
| + | $-0.3796 *$ (normalized) | a19 |
| + | $0.0701 *$ (normalized) | a20 |
| + | $0.2769 *$ (normalized) | a21 |
| + | $-1.6155 *$ (normalized) | a22 |
| + | $0.9716 *$ (normalized) | a23 |
| + | $0.2532 *$ (normalized) | a24 |
| + | $0.5938 *$ (normalized) | a25 |

+	$0.4138 *$ (normalized)	a26	
+	$-1.5804 *$	(normalized)	a27
+	$0.1973 *$ (normalized)	a28	
+	$0.2796 *$ (normalized)	a29	
+	$1.1746 *$ (normalized)	a30	
+	$0.698 *$ (normalized)	a31	
+	$-0.3987 *$ (normalized)	a32	
+	$-0.2987 *$	(normalized)	a33
+	$-1.1094 *$	(normalized)	a34
+	7.5956		

Number of kernel evaluations: 35464 (79.52\% cached)
>
Task 7.2.2 Try different kernelization methods. See the doc from here.

Visualizing Kernel's Effect

Sources

- SVM Kernels Plot, Scikit-learn.

```
# Dummy data
```

import matplotlib.pyplot as plt
import numpy as np

```
X = np.array(
    [
```

 [0.4, -0.7],
 [-1.5, -1.0],
 \([-1.4,-0.9]\),
 [-1.3, -1.2],
 \([-1.1,-0.2]\),
 \([-1.2,-0.4]\),
 [-0.5, 1.2],
 [-1.5, 2.1],
 [1.0, 1.0],
 [1.3, 0.8],
 [1.2, 0.5],
 [0.2, -2.0],
 [0.5, -2.4],
 [0.2, -2.3],
 [0.0, -2.7],
 [1.3, 2.1],
]
)
$y=n p . \operatorname{array}([0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])$

```
# Plotting settings
fig, ax = plt.subplots(figsize=(4, 3))
x_min, x_max, y_min, y_max = -3, 3, -3, 3
ax.set(xlim=(x_min, x_max), ylim=(y_min, y_max))
# Plot samples by color and add legend
scatter = ax.scatter(X[:, 0], X[:, 1], s=150, c=y, label=y,
edgecolors="k")
ax.figure.set_size_inches(10, 8)
ax.legend(*scatter.legend_elements(), loc="upper right",
title="Classes")
ax.set_title("Samples in two-dimensional feature space")
= plt.show()
```

Samples in two-dimensional feature space

from sklearn import svm
from sklearn.inspection import DecisionBoundaryDisplay

```
def plot_training_data_with_decision_boundary(kernel):
    # Träin the SV
    clf = svm.SVC(kernel=kernel, gamma=2).fit(X, y)
    # Settings for plotting
    _, ax = plt.subplots(figsize=(4, 3))
    x_min, x_max, y_min, y_max = -3, 3, -3, 3
    ax.set(x\\im=(x_min, x_max), ylim=(y_min, y_max))
    # Plot decision boundary and margins
    common_params = {"estimator": clf, "X": X, "ax": ax}
    DecisionBoundaryDisplay.from_estimator(
        **common_params,
        response_method="predict",
        plot_method="pcolormesh",
        alpha=0.3,
    )
    DecisionBoundaryDisplay.from_estimator(
        **common_params,
        response_method="decision_function",
        plot_method="contour",
        levels=[-1, 0, 1],
        colors=["k", "k", "k"],
        linestyles=["--", "-", "--"],
    )
    # Plot bigger circles around samples that serve as support vectors
    ax.scatter(
        clf.support_vectors_[:, 0],
        clf.support_vectors_[:, 1],
        s=250,
        facecolors="none",
        edgecolors="k",
    )
    # Plot samples by color and add legend
    ax.scatter(X[:, 0], X[:, 1], c=y, s=150, edgecolors="k")
    ax.figure.set_size_inches(10, 8)
    ax.legend(*scätter.legend_elements(), loc="upper right",
title="Classes")
    ax.set_title(f" Decision boundaries of {kernel} kernel in SVC")
    _ = plt.show()
# linear kernel
plot_training_data_with_decision_boundary("linear")
```



```
# polynomial kernel
plot_training_data_with_decision_boundary("poly")
```


Task 7.2.3 Tinker with the data and kernel, and compare resulting visualizations.

Support Vector Regression

```
# load the data
instances = loader.load_file("data/ionosphere.arff")
# set the class to be the last attribute
instances.class_index = instances.num_attributes - 1
# build the classifier
# Implements John Platt's sequential minimal optimization algorithm
for training a support vector classifier.
# This implementation globally replaces all missing values
# transforms nominal attributes into binary ones
# normalizes all attributes by default.
from weka.classifiers import Classifier
```

```
cls = Classifier(classname="weka.classifiers.functions.SMO")
```

cls.build_classifier(instances)
cls.description
<bound method OptionHandler.description of SMO
Kernel used:
Linear Kernel: $K(x, y)=\langle x, y\rangle$
Classifier for classes: b, g

BinarySMO

Machine linear: showing attribute weights, not support vectors.

	2.7284 * (normalized)	a01
+	1.2922 * (normalized)	a03
+	0.496 * (normalized)	a04
+	1.25 * (normalized)	a05
+	1.0747 * (normalized)	a06
+	1.3562 * (normalized)	a07
+	1.7094 * (normalized)	a08
+	0.662 * (normalized)	a09
+	0.3239 * (normalized)	a10
+	-0.3074 * (normalized)	a11
+	-0.2181 * (normalized)	a12
+	-0.3015 * (normalized)	a13
+	0.5468 * (normalized)	a14
+	0.5205 * (normalized)	a15
+	-0.3385 * (normalized)	a16
+	0.1632 * (normalized)	a17
+	0.1591 * (normalized)	a18
+	-0.3796 * (normalized)	a19
+	0.0701 * (normalized)	a20
+	0.2769 * (normalized)	a21
+	-1.6155 * (normalized)	a22
+	0.9716 * (normalized)	a23
+	0.2532 * (normalized)	a24
+	0.5938 * (normalized)	a25
+	0.4138 * (normalized)	a26
+	-1.5804 * (normalized)	a27
+	0.1973 * (normalized)	a28
+	0.2796 * (normalized)	a29
+	1.1746 * (normalized)	a30
+	0.698 * (normalized)	a31
+	-0.3987 * (normalized)	a32
+	-0.2987 * (normalized)	a33
+	-1.1094 * (normalized)	a34
	7.5956	

Number of kernel evaluations: 35464 (79.52% cached)
$>$

Task 7.2.4 Interpret the model description. Try on different datasets, and compare various interpretations.

Kernel Ridge Regression

The Kernel Perceptron

Multilayer Perceptrons

Radial Basis Function Networks

Stochastic Gradient Descent

7.3 Numeric Prediction with Local Linear Models

Model Trees

Source

- M5P, Weka' Sourceforge - Implements base routines for generating M5 Model trees and rules.

```
# load the data
instances = loader.load_file("data/cpu.arff")
instances
@relation cpu
@attribute MYCT numeric
@attribute MMIN numeric
@attribute MMAX numeric
@attribute CACH numeric
@attribute CHMIN numeric
@attribute CHMAX numeric
@attribute class numeric
@data
125,256,6000,256,16,128,198
```

29, 8000, 32000, 32, 8, 32, 269
29, 8000, 32000, 32, 8, 32, 220
29, 8000, 32000, 32, 8, 32, 172
29, 8000, 16000, 32, 8, 16, 132
26, 8000, 32000, 64, 8, 32, 318
23,16000, 32000, 64, 16, 32, 367
23,16000, 32000, 64, 16, 32, 489
23,16000,64000,64,16,32,636
$23,32000,64000,128,32,64,1144$
400, 1000, 3000, 0, 1, 2, 38
400,512,3500,4,1,6,40
60,2000,8000,65,1,8,92
50,4000, 16000, 65, 1, 8, 138
350,64,64,0,1,4,10
200, 512, 16000, 0, 4, 32, 35
167,524, 2000, $8,4,15,19$
$143,512,5000,0,7,32,28$
143, 1000, 2000, 0, 5, 16, 31
110,5000,5000, 142, 8, 64, 120
143,1500,6300, 0, 5, 32, 30
143,3100,6200, 0, 5, 20, 33
143,2300,6200, 0, 6, 64, 61
110,3100,6200,0,6,64,76
320,128,6000,0,1,12,23
320,512,2000,4,1,3,69
320, 256,6000, 0, 1, 6, 33
320,256,3000,4,1,3,27
320,512,5000,4,1,5,77
320, 256, 5000, 4, 1, 6, 27
25,1310,2620,131,12,24,274
25,1310,2620,131,12,24,368
50, 2620, 10480, 30, 12, 24, 32
50, 2620, 10480, 30, 12, 24, 63
56, 5240, 20970, 30, 12, 24, 106
64,5240, 20970, 30, 12, 24, 208
50,500,2000, $8,1,4,20$
50, 1000, 4000, 8, 1, 5, 29
50, 2000, 8000, 8, 1, 5, 71
50, 1000, 4000, 8, 3,5,26
50, 1000, 8000, 8, 3,5,36
50, 2000, 16000, 8, 3, 5, 40
50, 2000, 16000, 8, 3, 6, 52
50, 2000, 16000, 8, 3, 6, 60
133,1000,12000, $9,3,12,72$
133,1000, 8000, 9, 3, 12, 72
810,512,512,8,1,1,18
810, 1000,5000, 0, 1, 1, 20
320,512,8000,4,1,5,40
$200,512,8000,8,1,8,62$

700, 384, 8000, 0, 1, 1, 24
700, 256,2000, 0, 1, 1, 24
140, 1000, 16000, 16, 1, 3, 138
200,1000, 8000, 0, 1, 2, 36
110,1000,4000,16,1,2,26
110, 1000, 12000, 16, 1, 2, 60
220,1000, 8000,16,1,2,71
800,256,8000,0,1,4,12
800, 256, 8000, 0, 1, 4, 14
800, 256, 8000, 0, 1, 4, 20
800, 256, 8000, 0, 1, 4, 16
800,256,8000,0,1,4,22
125,512,1000, 0, 8, 20, 36
75, 2000, 8000, 64, 1, 38, 144
75,2000,16000,64,1,38,144
$75,2000,16000,128,1,38,259$
90, 256, 1000, 0, 3, 10, 17
$105,256,2000,0,3,10,26$
$105,1000,4000,0,3,24,32$
105, 2000, 4000, 8, 3, 19, 32
$75,2000,8000,8,3,24,62$
75,3000, 8000, 8, 3, 48, 64
175,256,2000,0,3,24,22
300, 768, 3000, 0, 6, 24, 36
300, 768, 3000, 6, 6, 24, 44
300,768,12000,6,6,24,50
300, 768, 4500, 0, 1, 24, 45
300, 384,12000,6,1,24,53
300,192,768,6,6,24,36
180, 768, 12000, 6, 1, 31, 84
330,1000,3000, 0, 2, 4, 16
300,1000,4000,8,3,64,38
300,1000,16000,8,2,112,38
330,1000,2000,0,1,2,16
330, 1000, 4000, 0, 3, 6, 22
140, 2000, 4000, 0, 3, 6, 29
140,2000,4000, 0, 4, 8, 40
140, 2000, 4000, 8, 1, 20, 35
140, 2000, 32000, 32, 1, 20, 134
140, 2000, 8000, 32,1,54,66
140, 2000, 32000, 32, 1, 54, 141
140, 2000, 32000, 32, 1, 54, 189
140,2000,4000,8,1,20,22
57,4000, 16000, 1, 6, 12, 132
57, 4000, 24000, 64, 12, 16, 237
26,16000, 32000,64,16,24,465
26,16000,32000,64, 8, 24,465
26,8000,32000, 0, 8, 24, 277
26,8000,16000, 0, 8, 16, 185

480, 96,512, 0, 1, 1, 6
203,1000,2000, 0, 1, 5, 24
115,512,6000,16,1,6,45
1100,512,1500,0,1,1,7
1100, 768, 2000, 0, 1, 1, 13
600,768,2000,0,1,1,16
400, 2000, 4000, 0, 1, 1, 32
400, 4000, 8000, 0, 1, 1, 32
900, 1000, 1000, 0, 1, 2, 11
900,512,1000,0,1,2,11
900, 1000, 4000, 4, 1, 2, 18
900, 1000, 4000, 8, 1, 2, 22
900,2000,4000, 0, 3, 6, 37
225, 2000, 4000, 8, 3, 6, 40
$225,2000,4000,8,3,6,34$
180, 2000, 8000, 8, 1, 6, 50
185, 2000, 16000, 16, 1, 6, 76
180, 2000, 16000, 16, 1, 6, 66
225,1000, 4000, 2, 3, 6, 24
25, 2000, 12000, 8, 1, 4, 49
25, 2000, 12000, 16, 3,5,66
17,4000, 16000, 8, 6, 12, 100
17, 4000, 16000, 32, 6, 12, 133
1500,768,1000, 0, 0, 0, 12
1500,768,2000,0,0,0,18
800,768,2000,0,0,0,20
50, 2000, 4000, 0, 3, 6, 27
50, 2000, 8000, 8, 3, 6, 45
50, 2000, 8000, 8, 1, 6,56
50, 2000, 16000, 24, 1, 6, 70
50, 2000, 16000, 24, 1, 6, 80
50, 8000, 16000, 48, 1, 10, 136
100,1000, 8000, 0, 2, 6, 16
100, 1000, 8000, 24, 2, 6, 26
100, 1000, 8000, 24, 3, 6, 32
50, 2000, 16000, 12, 3, 16, 45
50, 2000, 16000, 24, 6, 16, 54
50, 2000, 16000, 24, 6, 16, 65
$150,512,4000,0,8,128,30$
$115,2000,8000,16,1,3,50$
115,2000, 4000, 2, 1, 5, 40
92, 2000, 8000, 32,1,6,62
92, 2000, 8000, 32, 1, 6, 60
92, 2000, 8000, 4, 1, 6,50
75,4000,16000,16,1,6,66
60,4000, 16000, 32, 1, 6, 86
60,2000,16000,64,5,8,74
60,4000,16000,64,5,8,93
50, 4000, 16000, 64, 5, 10, 111
$72,4000,16000,64,8,16,143$
72,2000, 8000, 16, 6, 8, 105
40, 8000, 16000, 32, 8, 16, 214
40, 8000, 32000, 64, 8, 24, 277
35,8000,32000,64,8,24,370
38,16000,32000,128,16,32,510
48,4000,24000,32,8,24,214
38,8000,32000,64,8,24,326
30,16000, 32000, 256, 16, 24, 510
112,1000,1000,0,1,4,8
84,1000,2000,0,1,6,12
56,1000,4000, 0, 1, 6, 17
56, 2000, 6000, 0, 1, 8, 21
56,2000, 8000, 0, 1, 8, 24
56, 4000, 8000, 0, 1, 8, 34
56, 4000, 12000, $0,1,8,42$
$56,4000,16000,0,1,8,46$
$38,4000,8000,32,16,32,51$
$38,4000,8000,32,16,32,116$
38, 8000, 16000, 64, 4, 8, 100
38, 8000, 24000, 160, 4, 8, 140
38, 4000, 16000, 128, 16, 32, 212
200,1000,2000, 0, 1, 2, 25
200, 1000, 4000, 0, 1, 4, 30
200, 2000, 8000, 64, 1,5,41
250,512,4000, 0, 1, 7, 25
250,512,4000,0,4,7,50
250,1000,16000,1,1,8,50
160,512,4000, 2, 1,5,30
160,512,2000,2,3,8,32
160,1000,4000,8,1,14,38
160, 1000, 8000, 16, 1, 14, 60
160,2000, 8000, 32, 1, 13, 109
240,512,1000, $8,1,3,6$
240,512,2000, 8, 1, 5, 11
$105,2000,4000,8,3,8,22$
105,2000,6000,16,6,16,33
105, 2000, 8000, 16, 4, 14, 58
$52,4000,16000,32,4,12,130$
70,4000, 12000, $8,6,8,75$
59, 4000, 12000, 32, 6, 12, 113
59, 8000, 16000, 64, 12, 24, 188
26,8000,24000,32,8,16,173
26,8000,32000,64,12,16,248
26,8000,32000,128,24,32,405
116,2000,8000,32,5,28,70
50, 2000, 32000, 24, 6, 26, 114
50, 2000, 32000, 48, 26,52,208
50, 2000, 32000, 112, 52, 104, 307

50, 4000, 32000, 112, 52, 104, 397
30, 8000, 64000, 96, 12, 176,915
30, 8000, 64000, 128, 12, 176, 1150
180, 262, 4000, 0, 1, 3, 12
180,512,4000, 0,1,3,14
180, 262,4000, 0, 1,3,18
180,512,4000,0,1,3,21
124,1000, 8000, 0, 1, 8, 42
98, 1000, 8000, 32, 2, 8, 46
125, 2000, 8000, 0, 2, 14, 52
480,512, 8000, 32, 0, 0, 67
480, 1000, 4000, 0, 0, 0, 45

```
# set the class to be the last attribute
instances.class_index = instances.num_attributes - 1
```

\# build the classifier
\# Implements base routines for generating M5 Model trees and rules
from weka.classifiers import Classifier
cls = Classifier(classname="weka.classifiers.trees.M5P")
cls.build_classifier(instances)
cls.description
<bound method OptionHandler.description of M5 pruned model tree:
(using smoothed linear models)
CHMIN $<=7.5: \operatorname{LM1}(165 / 12.903 \%)$
CHMIN > 7.5 :
MMAX <= 28000 :
MMAX <= 13240 :
CACH <= 81.5 : LM2 (6/18.551\%)
CACH > 81.5 : LM3 (4/30.824\%)
MMAX > 13240 : LM4 (11/24.185\%)
MMAX > 28000 : LM5 (23/48.302\%)
LM num: 1
class =
-0.0055 * MYCT
+0.0013 * MMIN
+0.0029 * MMAX
+0.8007 * CACH
+0.4015 * CHMAX
$+11.0971$

LM num: 2
class =
-1.0307 * MYCT
+0.0086 * MMIN

```
    + 0.0031 * MMAX
    + 0.7866 * CACH
    - 2.4503 * CHMIN
    + 1.1597 * CHMAX
    + 70.8672
LM num: 3
class =
    -1.1057 * MYCT
    + 0.0086 * MMIN
    + 0.0031 * MMAX
    + 0.7995 * CACH
    - 2.4503 * CHMIN
    + 1.1597 * CHMAX
    + 83.0016
LM num: 4
class =
    -0.8813 * MYCT
    + 0.0086 * MMIN
    + 0.0031 * MMAX
    + 0.6547 * CACH
    - 2.3561 * CHMIN
    + 1.1597 * CHMAX
    + 82.5725
LM num: 5
class =
    -0.4882 * MYCT
    + 0.0218 * MMIN
    + 0.003 * MMAX
    + 0.3865 * CACH
    - 1.3252 * CHMIN
    + 3.3671 * CHMAX
    - 51.8474
Number of Rules : 5>
```

Task 7.3.1 Interpret the model tree. Explain what happens. What is the benefit over a usual single linear model?

Building The Tree

Pruning The Tree

```
# load the data
instances = loader.load_file("data/cpu.arff")
instances
```


@relation cpu

@attribute MYCT numeric @attribute MMIN numeric @attribute MMAX numeric @attribute CACH numeric @attribute CHMIN numeric @attribute CHMAX numeric @attribute class numeric
@data
125, 256, 6000, 256, 16, 128, 198
29, 8000, 32000, 32, 8, 32, 269
29, 8000, 32000, 32, 8, 32, 220
29, 8000, 32000, 32, 8, 32, 172
29, 8000, 16000, 32, 8, 16, 132
26, 8000, 32000, 64, 8, 32, 318
23,16000,32000,64,16,32,367
23,16000,32000,64,16,32,489
23,16000,64000,64,16,32,636
$23,32000,64000,128,32,64,1144$
400, 1000, 3000, $0,1,2,38$
400, 512, 3500, 4, 1, 6, 40
60, 2000, 8000, 65, 1, 8, 92
50, 4000, 16000, 65, 1, 8, 138
350, 64, 64, 0, 1, 4, 10
200, 512, 16000, 0, 4, 32, 35
167,524,2000, 8,4,15,19
143,512,5000, 0, 7, 32, 28
143,1000,2000, 0,5,16,31
110,5000,5000, 142, 8, 64, 120
143,1500,6300,0,5,32,30
143,3100,6200,0,5,20,33
143,2300,6200,0,6,64,61
110,3100,6200,0,6,64,76
320,128,6000,0,1,12,23
320,512,2000,4,1,3,69
320,256,6000,0,1,6,33
320, 256, 3000, 4, 1, 3, 27
320,512,5000,4,1,5,77
320,256,5000,4,1,6,27
25,1310,2620,131,12,24,274
25,1310,2620,131,12,24,368
50, 2620, 10480, 30, 12, 24, 32
50, 2620, 10480, 30, 12, 24, 63
56,5240, 20970, 30, 12, 24, 106
64,5240,20970,30,12,24,208
50,500,2000, 8, 1, 4, 20
50, 1000, 4000, 8, 1, 5, 29

50, 2000, 8000, 8, 1, 5, 71
50, 1000, 4000, 8, 3,5,26
50, 1000, 8000, 8, 3, 5, 36
50, 2000, 16000, 8, 3, 5, 40
50, 2000, 16000, 8, 3, 6, 52
50, 2000, 16000, 8, 3, 6, 60
133,1000,12000, $9,3,12,72$
133,1000, 8000, 9,3,12,72
810,512,512,8,1,1,18
810,1000,5000,0,1,1,20
320,512,8000,4,1,5,40
200,512,8000,8,1,8,62
700, 384, 8000,0,1,1,24
700,256,2000,0,1,1,24
140, 1000, 16000, 16, 1, 3, 138
200, 1000, 8000, $0,1,2,36$
110, 1000, 4000, 16, 1, 2, 26
$110,1000,12000,16,1,2,60$
220,1000, 8000,16,1,2,71
800, 256, 8000, 0, 1, 4, 12
800, 256, 8000, 0, 1, 4, 14
800,256,8000,0,1,4,20
800, 256, 8000, 0, 1, 4, 16
800, 256, 8000, 0, 1, 4, 22
125,512,1000, 0, 8, 20, 36
75,2000,8000,64,1,38,144
75,2000,16000,64,1,38,144
75, 2000, 16000, 128, 1, 38, 259
90, 256,1000,0,3,10,17
105, 256, 2000, 0, 3, 10, 26
105,1000,4000,0,3,24,32
105, 2000, 4000, 8, 3, 19, 32
75,2000,8000, 8,3,24,62
$75,3000,8000,8,3,48,64$
175,256,2000, 0, 3, 24, 22
300, 768, 3000, 0, 6, 24, 36
300, 768, 3000, 6, 6, 24, 44
300, 768,12000,6,6,24,50
300, 768, 4500, 0, 1, 24, 45
300, 384, 12000, 6, 1, 24,53
300, 192, 768, 6, 6, 24, 36
180, 768, 12000, 6, 1, 31, 84
330,1000,3000, 0, 2, 4, 16
300,1000,4000,8,3,64,38
300, 1000, 16000, 8, 2, 112, 38
330,1000,2000,0,1,2,16
330,1000,4000, 0, 3, 6, 22
140,2000,4000, 0, 3, 6, 29
140,2000,4000,0,4,8,40
140,2000,4000, 8, 1, 20, 35

140, 2000, 32000, 32, 1, 20, 134
140, 2000, 8000, 32,1,54,66
140, 2000, 32000, 32, 1, 54, 141
140, 2000, 32000, 32, 1, 54, 189
140,2000,4000,8,1,20,22
57,4000, 16000, 1, 6, 12, 132
57,4000, 24000, 64, 12, 16, 237
26,16000,32000,64,16,24,465
26,16000, 32000, 64, 8, 24, 465
26, 8000, 32000, 0, 8, 24, 277
26,8000,16000,0,8,16,185
480, 96,512,0,1,1,6
203,1000,2000, 0, 1, 5, 24
$115,512,6000,16,1,6,45$
1100,512,1500,0,1,1,7
1100, 768, 2000, 0, 1, 1, 13
$600,768,2000,0,1,1,16$
400, 2000, 4000, 0, 1, 1, 32
400, 4000, 8000, 0, 1, 1, 32
900, 1000, 1000, 0, 1, 2, 11
900, 512, 1000, 0, 1, 2, 11
900, 1000, 4000, 4, 1, 2, 18
900, 1000, 4000, 8, 1, 2, 22
900, 2000, 4000, 0, 3, 6, 37
225,2000,4000, 8, 3, 6, 40
225, 2000, 4000, 8, 3, 6, 34
180,2000, 8000, 8, 1, 6,50
185,2000,16000,16,1,6,76
180, 2000, 16000, 16, 1, 6, 66
225, 1000, 4000, 2, 3, 6, 24
25,2000,12000, 8, 1,4,49
25,2000,12000,16,3,5,66
17,4000,16000, 8, 6, 12, 100
17,4000, 16000, 32, 6, 12, 133
1500, 768, 1000, 0, 0, 0, 12
1500, 768,2000, 0, 0, 0, 18
800,768,2000,0,0,0,20
50, 2000, 4000, 0, 3, 6, 27
50, 2000, 8000, 8, 3, 6, 45
50, 2000, 8000, 8, 1, 6, 56
50, 2000, 16000, 24, 1, 6, 70
50, 2000, 16000, 24, 1, 6, 80
50, 8000, 16000, 48, 1, 10, 136
100, 1000, 8000, 0, 2, 6, 16
100, 1000, 8000, 24, 2, 6, 26
100, 1000, 8000, 24, 3, 6, 32
50, 2000, 16000, 12, 3, 16, 45
50, 2000, 16000, 24, 6, 16, 54
50,2000,16000,24,6,16,65
150,512,4000, 0, 8, 128, 30

115,2000, 8000, 16, 1, 3, 50
115,2000,4000, 2, 1,5,40
92, 2000, 8000, 32,1,6,62
92, 2000, 8000, 32,1,6,60
92,2000, 8000, 4, 1, 6,50
75, 4000, 16000, 16, 1, 6, 66
60,4000,16000,32,1,6,86
60, 2000, 16000, 64,5,8,74
60,4000,16000,64,5,8,93
50, 4000, 16000, 64,5,10,111
72,4000,16000,64,8,16,143
72,2000,8000,16,6,8,105
40, 8000, 16000, 32, 8, 16, 214
40, 8000, 32000, 64, 8, 24, 277
35, 8000, 32000, 64, 8, 24, 370
$38,16000,32000,128,16,32,510$
$48,4000,24000,32,8,24,214$
$38,8000,32000,64,8,24,326$
$30,16000,32000,256,16,24,510$
112,1000,1000, 0, 1, 4, 8
84,1000,2000, 0, 1, 6, 12
56,1000,4000, 0, 1, 6, 17
56,2000,6000, 0, 1, 8, 21
56,2000, 8000, 0, 1, 8, 24
56,4000, 8000, 0, 1, 8, 34
56,4000, 12000, 0, 1, 8, 42
56,4000, 16000, 0, 1, 8, 46
38,4000, 8000, 32,16,32,51
38,4000, 8000, 32,16,32,116
38,8000,16000,64,4,8,100
38,8000,24000,160,4,8,140
38,4000,16000,128,16,32,212
200,1000,2000,0,1,2,25
200,1000,4000, 0, 1, 4, 30
200, 2000, 8000, 64, 1, 5, 41
250,512,4000, 0, 1, 7, 25
250,512,4000, 0, 4, 7,50
250, 1000, 16000, 1, 1, 8, 50
160,512,4000,2,1,5,30
160,512,2000, 2, 3, 8, 32
160, 1000, 4000, 8, 1, 14, 38
160,1000, 8000, 16, 1, 14, 60
160, 2000, 8000, 32, 1, 13, 109
240,512,1000, $8,1,3,6$
240,512,2000,8,1,5,11
105, 2000, 4000, 8, 3, 8, 22
105,2000,6000,16,6,16,33
105,2000, 8000, 16, 4, 14, 58
52, 4000, 16000, 32, 4, 12, 130
70,4000,12000, 8, 6, 8, 75

59, 4000, 12000, 32, 6, 12, 113
59, 8000, 16000, 64, 12, 24, 188
26, 8000, 24000, 32, 8, 16, 173
26,8000, 32000, 64, 12, 16, 248
$26,8000,32000,128,24,32,405$
116,2000, 8000, 32,5,28,70
50, 2000, 32000, 24, 6, 26, 114
50, 2000, 32000, 48, 26, 52, 208
50, 2000, 32000, 112, 52, 104, 307
50, 4000, 32000, 112, 52, 104, 397
30, 8000, 64000, $96,12,176,915$
30, 8000, 64000, 128, 12,176,1150
180, 262, 4000, 0, 1, 3, 12
180, 512, 4000, 0, 1, 3, 14
180, 262, 4000, 0, 1, 3, 18
180, 512, 4000, 0, 1, 3, 21
124, 1000, $8000,0,1,8,42$
98, 1000, 8000, 32, 2, 8, 46
125,2000, 8000, 0, 2, 14, 52
480, 512, 8000, 32, 0, 0, 67
480, 1000, 4000, 0, 0, 0, 45
\# set class to be the last attribute
instances.class_index = instances.num_attributes - 1
\# build the classifier
\# parameter of minimum number of instance in a leaf is set to 10
from weka.classifiers import Classifier
cls = Classifier(classname="weka.classifiers.trees.M5P", options=["-
M", "10"])
cls.build_classifier(instances)
cls.description
<bound method OptionHandler.description of M5 pruned model tree:
(using smoothed linear models)

```
CHMIN <= 7.5 : LM1 (165/12.903%)
CHMIN > 7.5 :
    MMAX <= 28000 : LM2 (21/42.424%)
    MMAX > 28000 : LM3 (23/52.813%)
```

LM num: 1

```
class =
    -0.0055 * MYCT
    +0.0013 * MMIN
    + 0.0029 * MMAX
    + 0.8007 * CACH
    + 0.4015 * CHMAX
```

$+11.0971$

```
LM num: 2
class =
    0.0125 * MYCT
    + 0.0083 * MMIN
    + 0.0057 * MMAX
    + 0.7932 * CACH
    + 0.9133 * CHMAX
    - 33.8248
```

LM num: 3
class =
0.0125 * MYCT
+0.0215 * MMIN
+0.0037 * MMAX
+0.4135 * CACH
+ 2.9999 * CHMAX
- 99.0207
Number of Rules : 3>

Task 7.3.2 Modify the parameter of number of minimum instances in the leaf by changing the number 10 in the below line. Compare the model descriptions.
cls = Classifier(classname="weka.classifiers.trees.M5P", options=["M", "10"])

AominalAttributes

Missing Values

Psuedocode for Model Tree Induction

Rules from Model Tree

Locally Weighted Linear Regression

Sources

- LWL, Weka's sourceforge
\# load the data
instances = loader.load_file("data/cpu.arff")
\# set the class to be the last attribute
instances.class_index = instances.num_attributes - 1

```
# build the classifier
from weka.classifiers import Classifier
cls = Classifier(classname="weka.classifiers.lazy.LWL")
cls.build_classifier(instances)
```

Models are created in run-time so we won't expect anything in the model description.

```
cls.description
```

<bound method OptionHandler.description of Locally weighted learning
===========================
Using classifier: weka.classifiers.trees.DecisionStump
Using linear weighting kernels
Using all neighbours>
\# classify the last instance
cls.classify_instance(
instances.get_instance(
instances.num_instances - 1
)
)
1.0

Task 7.3.3 Use Euclid's distance function, fetch nearest 5, and create a linear model on them.
Task 7.3.4 Compare your model with LWL.

