
Chapter Goals
• How to combine multiple models to solve a single problem, usually solved by a single

model.

General Lab Guidlines
• Visualization.
• Modifiable code snippets.

Loading a dataset
dataset names: "airline", "breast-cancer", "contact-lenses", "cpu",
"cpu.with.vendor", "credit-g", "diabetes", "glass", "hypothyroid",
"ionosphere", "iris.2D", "iris", "labor", "segment-challenge",
"segment-test", "soybean", "supermarket", "unbalanced", "vote",
"weather.nominal", "weather.numeric"
df = pd.read_csv("data/weather.numeric.csv")
instances = loader.load_file("data/weather.numeric.arff")

Modules & Datasets Setup
@title
!apt-get install default-jdk
!apt install libgraphviz-dev

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
default-jdk is already the newest version (2:1.11-72build2).
0 upgraded, 0 newly installed, 0 to remove and 15 not upgraded.
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
libgraphviz-dev is already the newest version (2.42.2-6).
0 upgraded, 0 newly installed, 0 to remove and 15 not upgraded.

@title
!pip install pygraphviz
!pip install python-javabridge
!pip install python-weka-wrapper3
!pip install sklearn-weka-plugin

Requirement already satisfied: pygraphviz in
/usr/local/lib/python3.10/dist-packages (1.11)

Requirement already satisfied: python-javabridge in
/usr/local/lib/python3.10/dist-packages (4.0.3)
Requirement already satisfied: numpy>=1.20.1 in
/usr/local/lib/python3.10/dist-packages (from python-javabridge)
(1.23.5)
Requirement already satisfied: python-weka-wrapper3 in
/usr/local/lib/python3.10/dist-packages (0.2.14)
Requirement already satisfied: python-javabridge>=4.0.0 in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(4.0.3)
Requirement already satisfied: numpy in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(1.23.5)
Requirement already satisfied: packaging in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(23.2)
Requirement already satisfied: configurable-objects in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(0.0.1)
Requirement already satisfied: simple-data-flow in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(0.0.1)
Collecting sklearn-weka-plugin
 Using cached sklearn-weka-plugin-0.0.7.tar.gz (69 kB)
 Preparing metadata (setup.py) ... ent already satisfied: numpy in
/usr/local/lib/python3.10/dist-packages (from sklearn-weka-plugin)
(1.23.5)
Requirement already satisfied: python-weka-wrapper3>=0.2.5 in
/usr/local/lib/python3.10/dist-packages (from sklearn-weka-plugin)
(0.2.14)
Collecting sklearn (from sklearn-weka-plugin)
 Using cached sklearn-0.0.post12.tar.gz (2.6 kB)
 error: subprocess-exited-with-error

 × python setup.py egg_info did not run successfully.
 │ exit code: 1
 ╰─> See above for output.

 note: This error originates from a subprocess, and is likely not a
problem with pip.
 Preparing metadata (setup.py) ... error: metadata-generation-failed

× Encountered error while generating package metadata.
╰─> See above for output.

note: This is an issue with the package mentioned above, not pip.
hint: See above for details.

@title
#Restart runtime after installing the dependencies

@title
import os
import glob
import numpy as np
import pandas as pd
import weka.core.jvm as jvm
from weka.core import converters
import matplotlib.pyplot as plt

@title
data_dir = 'data'

@title
#!rm -r weka
#!rm -r data

@title
#jvm.stop()
jvm.start(packages=True)

DEBUG:weka.core.jvm:Adding bundled jars
DEBUG:weka.core.jvm:Classpath=['/usr/local/lib/python3.10/dist-
packages/javabridge/jars/rhino-1.7R4.jar',
'/usr/local/lib/python3.10/dist-packages/javabridge/jars/runnablequeue
.jar',
'/usr/local/lib/python3.10/dist-packages/javabridge/jars/cpython.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/core.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/python-weka-
wrapper.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/mtj.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/weka.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/arpack_combined.jar'
]
DEBUG:weka.core.jvm:MaxHeapSize=default
DEBUG:weka.core.jvm:Package support enabled

@title
Preparing Datasets
if not os.path.exists(data_dir):
 !mkdir $data_dir
 for file in ['airline.arff', 'breast-cancer.arff', 'contact-
lenses.arff', 'cpu.arff', 'cpu.with.vendor.arff', 'credit-g.arff',
'diabetes.arff', 'glass.arff', 'hypothyroid.arff', 'ionosphere.arff',
'iris.2D.arff', 'iris.arff', 'labor.arff', 'segment-challenge.arff',
'segment-test.arff', 'soybean.arff', 'supermarket.arff',
'unbalanced.arff', 'vote.arff', 'weather.nominal.arff',
'weather.numeric.arff',]:
 url =
'https://git.cms.waikato.ac.nz/weka/weka/-/raw/main/trunk/wekadocs/
data/' + file

 !wget -P $data_dir $url
 loader =
converters.Loader(classname="weka.core.converters.ArffLoader")
 saver =
converters.Saver(classname="weka.core.converters.CSVSaver")
 for file in glob.glob(os.path.join(data_dir, '*.arff')):
 dataset = loader.load_file(file)
 filename, file_extension = os.path.splitext(file)
 saver.save_file(dataset, filename + '.csv')
 !wget -P $data_dir https://raw.githubusercontent.com/Rytuo/ITMO-
CT/master/Others/AdvancedML/data/OpenML/data/1438.arff
 !rm -r weka

@title
import weka.core.packages as packages
packages.install_package("simpleEducationalLearningSchemes")
packages.install_package("generalizedSequentialPatterns")
packages.install_package("classAssociationRules")
packages.install_package("NNge")
packages.install_package("LibSVM")

from weka.core.converters import Loader
loader = Loader(classname="weka.core.converters.ArffLoader")

12.1 Combining Multiple Models

12.2 Bagging
Bagging by voting
for each iteration
sample data
train a model
upon classification, call all trained models
classify by voting

from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.datasets import make_classification
from sklearn.metrics import accuracy_score

Create a dummy dataset
X, y = make_classification(n_samples=1000, n_features=20,
n_informative=10, n_classes=2, random_state=42)

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)

Define the base classifier
base_classifier = DecisionTreeClassifier(random_state=42)

Alternatively, you can use a VotingClassifier for comparison
voting_classifier = VotingClassifier(estimators=[('base_classifier',
base_classifier)], voting='soft')
voting_classifier.fit(X_train, y_train)

Make predictions using the VotingClassifier
y_pred_voting = voting_classifier.predict(X_test)

Evaluate accuracy
accuracy_voting = accuracy_score(y_test, y_pred_voting)
print(f"Accuracy with VotingClassifier: {accuracy_voting:.2f}")

Accuracy with VotingClassifier: 0.83

Bagging by numeric weighted average
for each iteration
sample data
train a model
upon regression, call all trained models, and take weighted average

from sklearn.model_selection import train_test_split
from sklearn.ensemble import BaggingRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.datasets import make_regression
from sklearn.metrics import mean_squared_error
import numpy as np

Create a dummy regression dataset
X, y = make_regression(n_samples=1000, n_features=20, noise=0.1,
random_state=42)

Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)

Define the base regressor
base_regressor = DecisionTreeRegressor(random_state=42)

Define the BaggingRegressor with weighted average
bagging_regressor = BaggingRegressor(base_regressor, n_estimators=10,
random_state=42)

Fit the BaggingRegressor on the training data
bagging_regressor.fit(X_train, y_train)

Make predictions on the test set
y_pred = bagging_regressor.predict(X_test)

Evaluate Mean Squared Error
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse:.2f}")

Mean Squared Error: 7484.15

12.2.1 Task Inject noise in some given data set and train a model only on it. Now apply the
bagging method and observe how it guards against the noise.

12.3 Randomization
Random subspace method
For each iteration
take a random subset of features, and subset of rows
train a model
upon classification, aggregate all models' answers

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
from sklearn.metrics import accuracy_score

Create a dummy classification dataset
X, y = make_classification(n_samples=1000, n_features=20,
n_informative=10, n_classes=2, random_state=42)

Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)

Define the Random Forest Classifier with Random Subspace
random_subspace_classifier = RandomForestClassifier(n_estimators=10,
max_features='sqrt', random_state=42)

Fit the Random Forest on the training data
random_subspace_classifier.fit(X_train, y_train)

Make predictions on the test set
y_pred = random_subspace_classifier.predict(X_test)

Evaluate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

Accuracy: 0.87

Task 12.3.1 Modify the parameters of randomness, and compare corresponding models'
performances. At which thresholds the model is benefited and harmed? Explain.

12.4 Boosting
iterative unlike bagging where models are trained separately
new models are focused on instances handled incorrectly by earlier
ones.
incorrect instances are given more weights, so next models are more
biased towards them
weighting models' contributions by their performance, rather than
giving equal weight to all models

from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

Create a dummy classification dataset
X, y = make_classification(n_samples=1000, n_features=20,
n_informative=10, n_classes=2, random_state=42)

Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)

Define the AdaBoostClassifier
adaboost_classifier = AdaBoostClassifier(n_estimators=50,
random_state=42)

Fit the AdaBoostClassifier on the training data
adaboost_classifier.fit(X_train, y_train)

Make predictions on the test set
y_pred = adaboost_classifier.predict(X_test)

Evaluate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

Accuracy: 0.85

Task 12.4.1 Rather than giving slightly more weights to misclassified instances, give them 100%
of weights, totally ignoring correctly classified instances. What do you observe? Explain.

12.5 Additive Regression
forward stagewise additive modeling.
starts with an empty ensemble and incorporates new members
sequentially.
At each stage the model that maximizes the predictive performance of
the ensemble as a whole is added,
without altering those already in the ensemble.
next model should focus on those training instances on which the
ensemble performs poorly.

from sklearn.ensemble import GradientBoostingRegressor
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import numpy as np

Create a dummy regression dataset
X, y = make_regression(n_samples=1000, n_features=20, noise=0.1,
random_state=42)

Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)

Define the GradientBoostingRegressor
gradient_boosting_regressor =
GradientBoostingRegressor(n_estimators=100, learning_rate=0.1,
random_state=42)

Fit the GradientBoostingRegressor on the training data
gradient_boosting_regressor.fit(X_train, y_train)

Make predictions on the test set
y_pred = gradient_boosting_regressor.predict(X_test)

Evaluate Mean Squared Error
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse:.2f}")

Mean Squared Error: 3052.38

Task 12.5.1 Consider the misclassified instances at some stage. Compare the ensemble's
performance among integrating different models into it.

12.6 Interpretable Ensembles
Task 12.6.1 Recall model trees covered in previous notebooks, and think how boosting algorithm
can be applied to build them.

12.7 Stacking
Task 12.7.1 Build a Naive Bayes learner, and an instance-based learning scheme and combine
them to form a classifier by voting.

The voting aggregation method you used does not conform to the stacking methodology. The
idea is to build a meta-model, i.e a model above many models, learning how to use them.

Task 12.7.2 Take the outputs of both Naive Bayes and instance-based model, and re-interpret
them as inputs to a new model. Do simple statistical analysis and manually combine them by a
rule of your choice. Alternatively build a meta-model.

	Chapter Goals
	General Lab Guidlines
	Modules & Datasets Setup
	12.1 Combining Multiple Models
	12.2 Bagging
	12.3 Randomization
	12.4 Boosting
	12.5 Additive Regression
	12.6 Interpretable Ensembles
	12.7 Stacking

