Problem-set 04

Mostafa Touny

Contents

Ex. 1							•																														2
a	ı.																																				2
ł).				•		•								•	•	•	•						•							•						2
Ex. 2			•		•		•								•	•	•	•	•					•	•					•	•						2
Ex. 3			•		•		•								•	•	•	•	•					•	•					•	•						2
8	ı.		•		•		•							•	•	•	•	•	•					•	•					•	•						2
t).		•	•	•	•	•					•		•	•	•	•	•	•	•	•		•	•	•	•		•		•	•			•	•		3
Ex. 4	•		•	•	•	•	·		•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	·	•	•	•	•	·	•	•	•	•	•	•	3
8	ı.		•	·	•	•	·	·	•	•	•	•	•	•	·	·	•	·	•	•	·	•	•	·	•	•	•	•	•	•	•	•	·	•	·	•	3
ł).		•	•	•	•	·	•	•	•	•	•	•	•	·	•	·	·	•	•	·	•	•	·	•	•	•	•	•	•	·	•	•	•	·	·	3
C	; .	•	•	•	•	•	·	·	·	•	·	•	·	•	•	·	•	•	•	•	•	·	•	•	•	•	·	•	·	•	•	·	·	•	·	·	3
Ċ	1.		•	·	•	•	·	·	•	•	•	•	•	•	·	·	•	·	•	•	·	•	•	·	•	•	•	•	•	•	•	•	·	•	·	•	4

lectures 8, 9 (skimmed) Sipser Ch. 1.2; and, 3.2, 3.3 on nondeterminism. Sipser first half of Ch. 7.4 (and also Ch. 5.3 if it helps).

Ex. 1

\mathbf{a}

Obviously the problem has a polynomial-time verifier by specifying the range of the subsequence common among all w_i . It's easy to loop on that range k, Checking whether corresponding positions of all w_i are the same.

b

Obviously a verifier is some input x_0 such that $C_1(x_0) \neq C_2(x_0)$. It's easy to compute both circuits and check their unequal output.

Ex. 2

Intuitively, If a problem has some varifier, Then we can brute-force all possible verifiers. Observe we can choose the greatest branching factor c_{max} so that time is upper-bounded by $c_{max}^{poly(n)}$. Alternatively, Our argument might be seen through the perspective of a tree of an NP problem, where poly(n) is the time required of the longest path of the tree.

I am not aware of any more rigorous proof.

Ex. 3

а

For clarity and brevity we list all cases:

- unit clause x_i
 - delete any clause containing x_i
 - delete $\neg x_i$ from any clase
- unit clause $\neg x_i$
 - delete any clause containing $\neg x_i$
 - delete x_i from any clause

Due to symmetry we mention only the case of unit clause x_i .

We prove the new propagated C' is satisfiable if and only if the given C is satisfiable.

 (\leftarrow) Necessarily $x_i = True$. Hence any clause containing x_i is immediately evaluated to True as well. Since $\neg x_i = False$ one of the remaining units of the clause containing $\neg x_i$ must be evaluated to True.

 (\rightarrow) Following the same reasoning, Since $x_i = True$, adding any clause containing x_i is still going to be true regardless of other units boolean values. Also adding

 $\neg x_i = False$ to any clause evaluated to True won't change the whole clause's boolean value.

\mathbf{b}

We give a constructive polynomial-time algorithm. We follow the hint mentioned in the problem statement.

For case (ii), Loop on clauses, and for each:

- If no negative literal is assigned any value, Conveniently pick-up the first negative literal $\neg x_k$ and assign $x_k = False$.
- If a negative literal $\neg x_k$ is assigned $x_k = False$, Continue to the next clause.

Observe we only assign $x_k = False$. As a result, the case of a negative literal $\neg x_k$ assigned $x_k = True$ won't ever be encountered.

For case (i), Keep applying the process of a, Until all unit-clauses are eliminated. If any clause is empty, It's concluded the given C is unsatisfiable. Now we know every clause contains at least two literals, Including a negative literal. Case (i) is now reduced to case (ii).

Ex. 4

а

Clearly, If literals x_i which are assigned to 1 are even, Then they can re-arranged as pairs, Each yielding 0, and in turn all pairs yield 0. Observe for an even number, $2k \mod 2 = 0$.

Similarly, if literals x_i which are assigned to 1 are odd, Then we obtain 1 XOR 0 = 1, by separating one literal from the remaining even literals.

\mathbf{b}

We define summation as, $\epsilon_1 + \epsilon_2 = c_1 + c_2 + 1$ where are $\sum_i x_{1i} = c_1 \mod 2$ and $\sum_i x_{2i} = c_2 \mod 2$. Note if $c_1 = c_2 = 1$, Then $c_1 + c_2 + 1 = 1 + 1 + 1 = 1 \mod 2$ and hence $(\epsilon_1 + \epsilon_2)(x) = 1$. On the other hand, If $1 + c_2 + 1 = 1 \mod 2$, Then $c_2 = -1 = 1 \mod 2$. Hence, $\epsilon_2(x) = 1$.

\mathbf{c}

Consider k_1 to be the number of equations in which x_{11} appreas.

Update
$$x_{11}$$
 to $\begin{cases} 0, & \text{if } k_1 \text{ is even} \\ k_1 x_{11}, & \text{if } k_1 \text{ is odd} \end{cases}$ (1)

Remark in case $k_1 = 2m$ is even, Then $\sum_{j=1}^{2m} x_{1j} = 2(mx_{11}) = 0 \mod 2$. That, Regardless of x_{1j} values, as we would always obtain an even number.

Now consider the whole system of equations by summing all equations as we defined in b. In case k_1 is even, Then we know x_{1j} evaluates to zero, and hence their removal from the system doesn't affect. In case k_1 is odd, Then k_1x_{11} is exactly equivalent to $x_{11} + x_{12} + \cdots + x_{1n}$. Think of redistributing x_{1j} to reconstruct the original equations before the transformation, which clarifies why the new system is equivalent to the original one.

\mathbf{d}

If at any stage 0 = 1 is concluded, Then no matter what x is inputted, The system won't be satisfied. Since the transformed system is equivalent to the original one, It's trivial why the original system is unsatisfiable.

Observe in *modulus 2*, the only possible evaluation outcomes are 0 or 1. So if $LHS \neq RHS$, then necessarily we get 0 = 1. If we don't get 0 = 1, then all equations' evaluations are satisfied.

Observe also if $k_{ii}x_{ii} = c \mod 2$ then by our definitions we know k_{ii} is odd. It follows there's exactly one unique solution for $x_i i$.

As the instructor hinted, back-substitution can be applied recursively to compute $x_{nn}, x_{n-1n-1}, ..., x_{11}$ where once x_{ii} is computed. For all the above equations, Their number of variables are reduced by one. Only one literal x_{i-1i-1} is left for the next equation.

As a valid assignment x for the transformed system is constructed, The original system is satisfied by x also.