Problem-Set 06

Mostafa Touny

October 13, 2022

Contents

Ex.	1.	•	•	•		•	•			•		•	•	•		•				•		•	•	•	•	2
Ex.	2.																									3
Ex.	3.	•			•								•							•		•	•	•	•	4
Ex.	4.					•																				4

Lectures: Sipser 11: Ch. 9.3 and rest of Ch. 7.4. 12: Ch. 7.5.

Ex. 1

Here is a very illustrative example.

The procedure of encoding *3COL-UNARY* to *3COL* is as:

- (i) For each group of nodes labeled with some colour x, create two additional connected nodes x1 and x2, and connect each node coloured x to both of them.
- (ii) For each two distinct groups of colours x and y, connect some node from x with some node from y.

When encoded input is run on 3COL,

- Procedure (i) ensures all nodes coloured x will have the same colour, even if that colour is not exactly x.
- Procedure (ii) ensures groups of labeled nodes will have different colours.

Notably the colours outputted by 3COL may not match the given original labeled colours. Since colours are symmetric, i.e can be exchanged without tampering any required condition, an encoded graph f(w) is accepted by 3COL if and only if graph w is accepted by 3COL-UNARY.

Ex. 2

The goal is to show any language in NP can be polynomially reduced to *IMPLICIT-*4*COL*. The exponentiality of number of vertices of graph G_C is the central key of testing all possible certificates and in turn determining whether a given w belongs to Llanguage.

By cook-levin we know any NP language can be encoded in terms of SAT, and hence we can construct a corresponding circuit. Since the circuit's input is of length 2n, we can think of it as partitioned into two n-length inputs. The first one is problem's input (like a graph) and the second is a potential certificate (like a graph-route). The circuit evaluates whether a given input along some literals assignments (cirtificate) yields true (satisfiable).

We assume any language input is prefixed with 0, and any certificate input is prefixed with 1. If the circuit is given an invalid encoding it immediately outputs FALSE. In other words, If a circuit accepts some input pair, we are ensured the first one indicates a language input and the second indicates a possible certificate.

Now we can think of graph G_C as being partitioned into two groups; One for language inputs and the other for all possible certificates. If a vertix prefixed with 0 is connected to a vertix prefixed with 1, we can immediately conclude the language input is satisfiable, and otherwise it is unsatisfiable.

Given any language L we can construct a corresponding C, and by *IMPLICIT-4COL* a corresponding G_C . For any input w which we wish to check whether it belongs to L, We can see whether its encoded vertex in G_C is connected to any other vertex.

Ex. 3

Notation. 1

- NAE-Constraint: $N_i = (x_1, x_2, x_3)$
- $XOR(x_i, x_j) = (x_i \lor x_j) \land (\neg x_i \lor \neg x_j)$
- $GXOR(x_i, x_j, x_k) = XOR(x_i, x_j) \land XOR(x_i, x_k) \land XOR(x_j, x_k)$

Recall an XOR means exactly one of two literals is true

Lemma. 2 GXOR is unsatisfiable.

Observe each two XORs intersect a literal x_i . So either:

- x_i is *False*, and x_j and x_k are both *True*. Or
- x_i is *True*, and x_j and x_k are both *False*

But that contradicts the third XOR stipulating exactly one of x_j and x_k is True.

Lemma. 3 5 clauses of *GXOR* are satisfiable.

Following the same line of reasoning of the previous lemma, It's clear by ignoring some clause of the 6 clauses of GXOR, we can have x_j and x_k both assigned to the same boolean value.

Lemma. 4 Equivalence of NAE constraint and 5 clauses of *GXOR*.

It is clear from the previous discussion that satisfying any 5 clauses of GXOR is equivalent to satisfying an NAE constraint. Clearly, *Not-All-Equal* constraint is exactly the same as either two literals are *True* and one is *False*, or two literals are *False* and one is *True*.

Theorem. 5 An *NAE-3SAT:* N_1, N_2, \ldots, N_r is equivalent to corresponding *MAX-2SAT:* $GXOR_1, GXOR_2, \ldots, GXOR_r$ with at least 5r clauses to be satisfied.

If MAX-2SAT is going to satisfy exactly 5 clauses of each $GXOR_i$, Then we are guaranteed of satisfying all N_i . In fact, This is the only feasible distribution of satisfied clauses. Otherwise all 6 clauses of some $GXOR_i$ must be satisfied, contradicting Lemma 2.

On the other hand, It's clear if a given NAE-3SAT instance is satisfiable, then so is the corresponding MAX-2SAT.

Ex. 4

"not confident of the solution"

a

As mentioned by the instructor we follow the verifier-based definition of NP. Our goal is to show

 $\langle M, x, 1^w, 1^t \rangle \in TS \leftrightarrow \exists u \, s.t \, S(\langle M, x, 1^w, 1^t \rangle, u) \text{ certifies } \langle M, x, 1^w, 1^t \rangle \in TS$

By S we mean an algorithm which simulates M on (x, u), untill it accepts on t steps.

The definition trivially concludes our intended goal. Note if $\langle M, x, 1^w, 1^t \rangle \notin TS$ then obviously there's no any certificate u, such that any M computes (x, u) in time bounded by t.

\mathbf{b}

Let L denote any language in NP. If $x_0 \in L$, Then we know there's some turing machine M_0 which verifies x_0 by some certificate u_0 in time $t_0 = poly(n)$. Clearly it's possible to construct some $\langle M_0, x_0, 1^{w_0}, 1^{t_0} \rangle \in TS$. if $x_0 \notin L$, then there's no any verifier u.