Ch.12, Sec. 2 - Rogawski \& Adams' Calculus

Mostafa Touny

September 25, 2023

Contents

Ex. 2.60 2
Ex. 2.66 2
Ex. 2.67 3

Ex. 2.60

67. A median of a triangle is a segment joining a vertex to the midpoint of the opposite side. Referring to Figure 20(A), prove that three medians of triangle $A B C$ intersect at the terminal point P of the vector $\frac{1}{3}(\mathbf{u}+\mathbf{v}+\mathbf{w})$. The point P is the centroid of the triangle. Hint: Show, by parametrizing the segment $\overline{A A^{\prime}}$, that P lies two-thirds of the way from A to A^{\prime}. It will follow similarly that P lies on the other two medians.

$$
\begin{aligned}
L & =P_{0}+t v \\
& =\left(x_{0}, y_{0}, z_{0}\right)+t(a, b, c) \\
x & =x_{0}+t a \rightarrow t=\frac{x-x_{0}}{a} \\
y & =y_{0}+t b \rightarrow t=\frac{y-y_{0}}{b} \\
z & =z_{0}+t c \rightarrow t=\frac{z-z_{0}}{c}
\end{aligned}
$$

Ex. 2.66

66. Show that the line in the plane through $\left(x_{0}, y_{0}\right)$ of slope m has symmetric equations

$$
x-x_{0}=\frac{y-y_{0}}{m}
$$

Be definition of a slope, We have two points on the line: $\left(x_{0}, y_{0}\right)$ and $\left(x_{0}+1, y_{0}+m\right)$.
By page 640, We take the directional vector: $v=\left(x_{0}+1, y_{0}+m\right)-\left(x_{0}, y_{0}\right)=(1, m)$.
Thus,

$$
\begin{aligned}
x=x_{0}+(1) t \rightarrow t & =x-x_{0} \\
y=y_{0}+(m) t \rightarrow t & =\frac{y-y_{0}}{m}
\end{aligned}
$$

Hence, The symmetric form is satisfied.

Ex. 2.67

60. Let \mathcal{L} be the line through $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ with direction vector $\mathbf{v}=\langle a, b, c\rangle$. Show that \mathcal{L} is defined by the symmetric equations (10). Hint: Use the vector parametrization to show that every point on \mathcal{L} satisfies (10).

$$
\begin{aligned}
\overrightarrow{O A} & =v \\
\overrightarrow{O A^{\prime}} & =\frac{1}{2}(w-u)+u \\
& =\frac{1}{2}(w+u) \\
\overrightarrow{O A^{\prime}}-\overrightarrow{O A} & =\frac{1}{2} w+\frac{1}{2} u-v
\end{aligned}
$$

Taking $2 / 3$ of it: $\frac{2}{3}\left(\overrightarrow{O A^{\prime}}-\overrightarrow{O A}\right)=\frac{1}{3} w+\frac{1}{3} u-\frac{2}{3} v$.
P is the terminal of vector: $v+\frac{1}{3} w+\frac{1}{3} u-\frac{2}{3} v=\frac{1}{3} w+\frac{1}{3} u+\frac{1}{3} v$.
Symmetrically, Taking $\frac{2}{3}$ of segments $B B^{\prime}$ and $C C^{\prime}$ yields the vector $\frac{1}{3} w+\frac{1}{3} u+\frac{1}{3} v$, and thus point P lies on the other two medians as well.

