Chapter 03

Mostafa Touny

September 17, 2023

Contents

Problems 2
2 2
4 2
6(b) 2
7 2
10 3
19 3
30 3
34 3

Problems

2
$(Q,+) .\left\{\left.\frac{x}{2} \right\rvert\, x \in \mathcal{Z}\right\}$.
$\left(Q^{*}, *\right) .\left\{2^{x} \mid x \in \mathcal{Z}^{+}\right\} \cup\left\{\left.\frac{1}{2^{x}} \right\rvert\, x \in \mathcal{Z}^{+}\right\} \cup\{1\}$.
4
Consider $|x|=n$. Then $x^{n}=1$ and no positive $r<n$ where $x^{r}=1$. It follows

$$
\begin{aligned}
\left(x^{n}\right)^{-1} & =(1)^{-1} \\
(x \cdot x \cdots \cdot x)^{-1} & =1 \\
x^{-1} \cdots \cdot x^{-1} & = \\
\left(x^{-1}\right)^{n} & =
\end{aligned}
$$

Analogously if $\left(x^{-1}\right)^{r}=1$ then $x^{r}=1$. That cannot happen for $r<n$.
6(b)
Identity is $e=0$.
$|3|=4 .|8|=3 .|11|=12$.

7

Fact. For any element x in any group, $x^{n+m}=x^{n} x^{m}$.
Fact. For any element x in any group, $\left(x^{k}\right)^{m}=x^{k m}$.

$$
\begin{aligned}
\left(a^{4} c^{-2} b^{4}\right)^{-1} & =\left(b^{4}\right)^{-1}\left(c^{-2}\right)^{-1}\left(a^{4}\right)^{-1} \\
& =\left(b^{4}\right)^{-1}\left(c^{2}\right)\left(a^{4}\right)^{-1} \\
& =\left(b^{7} b^{-3}\right)^{-1}\left(c^{2}\right)\left(a^{6} a^{-2}\right)^{-1} \\
& =\left(b^{-3}\right)^{-1}\left(c^{2}\right)\left(a^{-2}\right)^{-1} \\
& =b^{3} c^{2} a^{2}
\end{aligned}
$$

10

We naively construct all possible subgroups, pruning possible branches by their properties.
Any subgroup must have the identity element. $\left\{R_{0}\right\} .(+1)$
R_{0}, X is a subgroup for any reflection $X=H, V, D, D^{\prime} .(+4)$

Considering a subgroup with R_{0}, X_{0}, X_{1} for distinct reflections X_{0}, X_{1} it must be the case we get rotation R_{s} for $s \neq 0$. So we cannot have a subgroup restricted on reflections other than the aforementioned case.
$\left\{R_{0}, R_{180}\right\} .(+1)$
For any subgroup with R_{90} or R_{270}, since it is closed it must contain also $\left\{R_{0}, R_{90}, R_{180}, R_{270}\right\}$. (+1)

For any subgroup containing $\left\{R_{0}, R_{180}, H\right\}$ it must contain also $\left\{R_{0}, R_{180}, H, V\right\}$. For any subgroup containing $\left\{R_{0}, R_{180}, V\right\}$ it must contain also $\left\{R_{0}, R_{180}, V, H\right\} .(+1)$

For any subgroup containing $\left\{R_{0}, R_{180}, D\right\}$ it must contain also $\left\{R_{0}, R_{180}, D, D^{\prime}\right\}$. For any subgroup containing $\left\{R_{0}, R_{180}, D^{\prime}\right\}$ it must contain also $\left\{R_{0}, R_{180}, D, D^{\prime}\right\} .(+1)$

For any subgroup containing R_{s} for $s \neq 180$ and any reflection $X=H, V, D, D^{\prime}$, since it is closed, it must contain also $\left\{R_{0}, R_{90}, R_{180}, R_{270}, H, V, D, D^{\prime}\right\} .(+1)$

So far we counted 10 subgroups.

19

We show the contrapositive. Assume $a^{m}=a^{n}$ for $m>n$. Then $a^{m} a^{-n}=a^{n} a^{-n}$ implying $a^{m-n}=e$, but $m-n>0$ so a is of a finite order.

30

The question presumes the uniqueness of H. We won't prove it.
$H=\left\{2\left(9 k_{1}+15 k_{2}+20 k_{3}\right) \mid k_{1}, k_{2}, k_{3} \in \mathcal{Z}\right\}$.
Taking $k_{1}=k_{2}=k_{3}=0$ yields the identity $e=0$. For $x \in H$ corresponding to k_{i}, Take $-\left(k_{i}\right)$ to obtain the inverse. Closed property is clear from the definition. Associativity follows from G. Odd numbers are excluded conforming to the fact H is a proper subgroup.

34

Since $e \in H$ and $e \in K$ by definition, We have $e \in H$.
if $x, y, z \in H \cap K$, then $x, y, z \in H$ and associativity follows.
if $x \in H \cap K$, then $-x \in H$ and $-x \in K$, and any element has an inverse.
if $x, y \in H \cap K$, then $x+y \in H$ and $x+y \in K$ by properties of a group.
A trivial argument by induction shows the intersection of any number of subgroups.

