Chapter 03

Mostafa Touny

September 17, 2023

Contents

Problems																					2
$2 \ldots \ldots$			 •		•		•	•		•		•	•						•		2
4			 •		•	•	•	•		•			•								2
6(b)			 •		•	•	•	•		•			•								2
7			 •		•	•	•	•		•	•	•	•	•			•	•	•		2
10			 •		•	•	•	•		•			•								3
19			 •	•	•	•					•	•		•				•	•		3
30			 •		•	•	•	•		•			•	•					•		3
34																					3

Problems

$\mathbf{2}$

$$(Q, +). \ \{\frac{x}{2} \mid x \in \mathcal{Z}\}.$$
$$(Q^*, *). \ \{2^x \mid x \in \mathcal{Z}^+\} \cup \{\frac{1}{2^x} \mid x \in \mathcal{Z}^+\} \cup \{1\}.$$

4

Consider |x| = n. Then $x^n = 1$ and no positive r < n where $x^r = 1$. It follows

$$(x^{n})^{-1} = (1)^{-1}$$
$$(x \cdot x \cdot \dots \cdot x)^{-1} = 1$$
$$x^{-1} \cdot \dots \cdot x^{-1} =$$
$$(x^{-1})^{n} =$$

Analogously if $(x^{-1})^r = 1$ then $x^r = 1$. That cannot happen for r < n.

6(b)

Identity is e = 0. |3| = 4. |8| = 3. |11| = 12.

$\mathbf{7}$

Fact. For any element x in any group, $x^{n+m} = x^n x^m$. Fact. For any element x in any group, $(x^k)^m = x^{km}$.

$$\begin{aligned} (a^4c^{-2}b^4)^{-1} &= (b^4)^{-1}(c^{-2})^{-1}(a^4)^{-1} \\ &= (b^4)^{-1}(c^2)(a^4)^{-1} \\ &= (b^7b^{-3})^{-1}(c^2)(a^6a^{-2})^{-1} \\ &= (b^{-3})^{-1}(c^2)(a^{-2})^{-1} \\ &= b^3c^2a^2 \end{aligned}$$

10

We naively construct all possible subgroups, pruning possible branches by their properties. Any subgroup must have the identity element. $\{R_0\}$. (+1) R_0, X is a subgroup for any reflection X = H, V, D, D'. (+4) Considering a subgroup with R_0, X_0, X_1 for distinct reflections X_0, X_1 it must be the case we get rotation R_s for $s \neq 0$. So we cannot have a subgroup restricted on reflections other than the aforementioned case.

 $\{R_0, R_{180}\}$. (+1)

For any subgroup with R_{90} or R_{270} , since it is closed it must contain also $\{R_0, R_{90}, R_{180}, R_{270}\}$. (+1)

For any subgroup containing $\{R_0, R_{180}, H\}$ it must contain also $\{R_0, R_{180}, H, V\}$. For any subgroup containing $\{R_0, R_{180}, V\}$ it must contain also $\{R_0, R_{180}, V, H\}$. (+1)

For any subgroup containing $\{R_0, R_{180}, D\}$ it must contain also $\{R_0, R_{180}, D, D'\}$. For any subgroup containing $\{R_0, R_{180}, D'\}$ it must contain also $\{R_0, R_{180}, D, D'\}$. (+1)

For any subgroup containing R_s for $s \neq 180$ and any reflection X = H, V, D, D', since it is closed, it must contain also $\{R_0, R_{90}, R_{180}, R_{270}, H, V, D, D'\}$. (+1)

So far we counted 10 subgroups.

19

We show the contrapositive. Assume $a^m = a^n$ for m > n. Then $a^m a^{-n} = a^n a^{-n}$ implying $a^{m-n} = e$, but m - n > 0 so a is of a finite order.

30

The question presumes the uniqueness of H. We won't prove it.

 $H = \{ 2(9k_1 + 15k_2 + 20k_3) \mid k_1, k_2, k_3 \in \mathcal{Z} \}.$

Taking $k_1 = k_2 = k_3 = 0$ yields the identity e = 0. For $x \in H$ corresponding to k_i , Take $-(k_i)$ to obtain the inverse. Closed property is clear from the definition. Associativity follows from G. Odd numbers are excluded conforming to the fact H is a proper subgroup.

$\mathbf{34}$

Since $e \in H$ and $e \in K$ by definition, We have $e \in H$.

if $x, y, z \in H \cap K$, then $x, y, z \in H$ and associativity follows.

if $x \in H \cap K$, then $-x \in H$ and $-x \in K$, and any element has an inverse.

if $x, y \in H \cap K$, then $x + y \in H$ and $x + y \in K$ by properties of a group.

A trivial argument by induction shows the intersection of any number of subgroups.