Chapter 04

Mostafa Touny

September 25, 2023

Contents

Problems 2
1 2
5 2
10 2
11 2
27 3
30 3
36 3
48 3
59 4
61 4

Problems

1

By corollary 4 (page 80).
Generators of \mathcal{Z}_{6} are 1,5 since $\operatorname{gcd}(1,6)=\operatorname{gcd}(5,6)=1$.
Generators of \mathcal{Z}_{8} are $1,3,5,7$ since $\operatorname{gcd}(1,8)=\operatorname{gcd}(3,8)=\operatorname{gcd}(5,8)=\operatorname{gcd}(7,8)=1$.
Generators of \mathcal{Z}_{20} are $1,3,7,9,11,13,17,19$ since $\operatorname{gcd}(1,20)=\operatorname{gcd}(3,20)=\operatorname{gcd}(7,20)=$ $\operatorname{gcd}(9,20)=\operatorname{gcd}(11,20)=\operatorname{gcd}(13,20)=\operatorname{gcd}(17,20)=\operatorname{gcd}(19,20)=1$.

5

$\langle 3\rangle=\left\{3^{0}, 3^{1}, 3^{2}, 3^{3}, 3^{4}, 3^{5}, \ldots\right\} \cup\left\{3^{-1}, 3^{-2}, 3^{-3}, 3^{-4}, 3^{-5}, \ldots\right\}=\{0,3,9,7,1,3, \ldots\} \cup$ $\{-3,9,-7,1,-3, \ldots\}=\{0,3,9,7,1,3\} \cup\{17,9,13,1,17\}=\{0,1,3,7,9,13,17\}$.
$\langle 7\rangle=\left\{7^{0}, 7^{1}, 7^{2}, 7^{3}, 7^{4}, 7^{5}, \ldots\right\} \cup\left\{7^{-1}, 7^{-2}, 7^{-3}, 7^{-4}, 7^{-5}, \ldots\right\}=\{0,7,9,3,1,7, \ldots\} \cup$ $\{-7,9,-3,1,-7, \ldots\}=\{0,7,9,3,1\} \cup\{13,1,17,1\}=\{0,1,3,7,9,13,17\}$

10

By corollary (page 82). One generator is $\langle 24 / 8\rangle=\langle 3\rangle=\left\{3^{0}, 3^{1}, 3^{2}, 3^{3}, 3^{4}, 3^{5}, 3^{6}, 3^{7}, 3^{8}, 3^{9}\right\} \cup$ $\left\{3^{-1}, 3^{-2}, 3^{-3}, 3^{-4}, 3^{-5}, 3^{-6}, 3^{-7}, 3^{-8}, 3^{-9}\right\}=\{0,3,6,9,12,15,18,21,0\} \cup\{21,6,15,12,9,18,3,0,21\}=$ $\{0,3,6,9,12,15,18,21\}$

Note any generator of that subgroup must be contained in it as $a=a^{1} \in\langle a\rangle$.
By corollary 3 (page 80). Generators are $3^{5}=15$ and $3^{7}=21$, as $\operatorname{gcd}(24,5)=$ $\operatorname{gcd}(24,7)=1$.

By corollary 3 (page 80). Generators of arbitrary G are $1,5,7,11,13,17,19,23$ since $\operatorname{gcd}(24, i)=1$. Observe since G is generated by a, Any candidate must be of the form a^{i}. So we covered all of them.

11

Follows trivially by corollary 3 (page 80), as $\operatorname{gcd}(n,-1)=1$.

27

We know given a positive integer n, there is a complex z such that $z^{n}=1$. Then $S_{n}=\left\{z^{0}, z^{1}, z^{2}, \ldots\right\}=\left\{z^{0}, z^{1}, \ldots, z^{n-1}\right\}$. Clearly it is a group.
For z^{-i} observe $-i=n(m)+r$ where $0 \leq r<n$. Then $-i-r$ is divisable by n, and by theorem 4.1 (page 76), $z^{-i}=z^{r}$. Then $\left\{z^{-1}, z^{-2}, \ldots\right\}$ is contained in S_{n}.

Thus we conclude $S_{n}=\langle z\rangle$ is a subgroup of order n.

30

We call a subgroup new if it is not $\{e\}$ or G. Observe constructing it contradicts a given hypothesis.

Select $a \neq e$. If $\langle a\rangle$ is of infinite order, then $\left\langle a^{2}\right\rangle$ is a new subgroup. So $\langle a\rangle$ is of finite order n.

If $\langle a\rangle \neq G$ then $\langle a\rangle$ is a new subgroup. So $\langle a\rangle=G$.
If n is not prime, i.e composite, then by theorem 4.3 (page 81), we can take divisor k such that $\left\langle a^{n / k}\right\rangle$ is a new subgroup of order k. Note by divisibility $1<k<n$.

It follows G is a finite cyclic group of prime order n.

36

	4	8	12	16
4	16	12	8	4
8	12	4	16	8
12	8	16	4	12
16	4	8	12	16

All entries are contained in $\{4,8,12,16\}$, So closed. 16 is the identity. Every row has an 16 entry showing inverses existince. The group is cyclic.

Its generators are all its elements, $4,8,12$ and 16 . To see why you can trace the table. For example $8^{1}=8,8^{2}=4,8^{3}=8^{2} \cdot 8=4 \cdot 8=12,8^{4}=8^{3} \cdot 8=12 \cdot 8=16$.

48

H is a subgroup by Theorem 3.2 (page 63). Given $a=10 k_{0}=8 k_{1}$ and $b=10 k_{2}=8 k_{3}$, Trivially $a+b=10\left(k_{0}+k_{2}\right)=8\left(k_{1}+k_{3}\right) \in H$. Also $-a=10\left(-k_{0}\right)=8\left(-k_{1}\right) \in H$.
H is not a subgroup in case of "OR". Consider the counter-example $10+8=18$ as 18 is neither divisible by 10 nor 8 , Violating closeness property.

59

* Partially Solved

Let G be a group with only a and b elements of order 2 . We try to come-up with a contradiction.

By definition $a^{2}=b^{2}=e$, so $a^{-1}=a$ and $b^{-1}=b$. Clearly $a b \neq a, b$, or e. For example if $a b=e$ then $b=a^{-1}=a$ which is not true as a and b are given as distinct elements.

Case $a b=b a$. Then $(a b)^{2}=(a b)(b a)=a e a=a^{2}=e$. Contradiction.
Case $a b \neq b a$. No solution found for that case.

61
Let $x \in\langle a\rangle \cap\langle b\rangle$. Then by corollary 1 (page 79), $|x|$ divides both 10 and 21. Since they are coprime, $|x|=1$ and $x^{1}=x=e$.

