Chapter 08

Mostafa Touny

November 3, 2023

Contents

Problems 2
4 2
5 2
6 2
15 2
17 3
21 3
23 3
35 4
46 4
48 4

Problems

4
Clearly, For arbitrary $a, c \in G$ and $b, d \in H$

$$
\begin{gathered}
a c=c a \wedge b d=d b \\
\leftrightarrow(a c, b d)=(c a, d b) \\
\leftrightarrow(a, b)(c, d)=(c, d)(a, b)
\end{gathered}
$$

I guess the general case is any group-theoretic property on both G and H is also on $G \oplus H$, and vice verca.

5

Assume for the sake of contradiction $Z \oplus G$ is cyclic. Then by definition there is a generator (a, b). Then necessarily $\langle a\rangle=Z$ and $\langle b\rangle=G$ as by definition we have $(a, b)^{k}=\left(a^{k}, b^{k}\right)$. Observe $\langle a\rangle$ is of infinite order. Fix $c \in Z$, Then we know $a^{k}=c$ for some k. Compute $(a, b)^{k}=\left(a^{k}, b^{k}\right)=(c, d)$. Let h be the element other than d in G. Now we can't generate (c, h). By theorem 4.1 (page 76) if $a^{i}=a^{k}$ then $i=k$. In other words, k is the only integer that yields $a^{k}=c$.

6

Clearly $(1,1) \in Z_{8} \oplus Z_{2}$ is of order 8 . We claim no element of $Z_{4} \oplus Z_{4}$ is of order 8 , Which suffices to solve the problem.

From Theorem 4.3 (page 81) we know any element of Z_{4} is of order, which divides 4. In other words, For any element a, there is $k \leq 4$ such that $k|a|=4$. Similarly for another element b we have $k^{\prime}|b|=4$.

So for any $(a, b) \in Z_{4} \oplus Z_{4}$, Observe $(a, b)^{4}=\left(a^{4}, b^{4}\right)=\left(a^{k|a|}, b^{k^{\prime}|b|}\right)=\left(\left(a^{|a|}\right)^{k},\left(b^{|b|}\right)^{k^{\prime}}\right)=$ $\left(0^{k}, 0^{k^{\prime}}\right)=(0,0)$. So order of (a, b) is at most 4 .

15

Let $\phi: C \rightarrow R \oplus R$ where $\phi(a+b i)=(a, b)$.

- Injective. $\phi(a+b i)=\phi(c+d i)$ implies $(a, b)=(c, d)$, and in turn $a=c$ and $b=d$.
- Surjective. For any (a, b) we have $\phi(a+b i)=(a, b)$.
- Preserves Operation. $\phi(a+b i) \phi(c+d i)=(a, b)(c, d)=(a+c, b+d)=\phi((a+$ $c)+(b+d) i)=\phi((a+b i)+(c+d i))$.

17

Since $G \oplus H$ is cyclic, it has a generator (a, b). It follows $\langle a\rangle=G$ and $\langle b\rangle=H$. If that is not the case, Then we can select an element from G or H whereby $(a, b)^{k}=\left(a^{k}, b^{k}\right)$ won't cover it, on it corresponding index.

21

Denote the equivalence $\langle(g, h)\rangle=\langle g\rangle \oplus\langle h\rangle$ by (1).
Recall theorem 8.1 (page 158).
By definition we know $(g, h)^{k}=\left(g^{k}, h^{k}\right)$ where $g^{k} \in\langle g\rangle$ and $h^{k} \in\langle h\rangle$.
The condition is $|g|$ and $|h|$ are coprime. Observe it is equivalent to $\operatorname{lcm}(|g|,|h|)=|g||h|$.
(Necessity) We show given (1), The condition holds. Since sets are equal, and cardinality of L.H.S is $|g| \cdot|h|$, Then $|(g, h)|=|g| \cdot|h|$. By thm 8.1, The condition is satisfied.
(Sufficent) We show given the condition, (1) holds. By thm 8.1, $|(g, h)|=|g| \cdot|h|$. So its cardinality is the same as R.H.S, and it is a subset of it. It follows (1) holds.

23

Any element in \mathcal{Z}_{3} is of order 3 , except the identity 0 . Consider an arbitrary non-identity element $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \neq e=\underbrace{(0, \ldots, 0)}_{k \text { times }}$ in $\underbrace{\mathcal{Z}_{3} \oplus \cdots \oplus \mathcal{Z}_{3}}_{k \text { times }}$. We claim $\left|\left(x_{1}, \ldots, x_{k}\right)\right|=3$.
Following the fact all non-identity elements are of order 3 , and we have some $x_{i} \neq 0$,

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{k}\right)^{1}=\left(x_{1}^{1}, x_{2}^{1}, \ldots, x_{k}^{1}\right) \neq e \\
& \left(x_{1}, x_{2}, \ldots, x_{k}\right)^{2}=\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{k}^{2}\right) \neq e \\
& \left(x_{1}, x_{2}, \ldots, x_{k}\right)^{3}=(0,0, \ldots, 0)=e
\end{aligned}
$$

Therefore we have $3^{k}-1$ elements of order 3 in $\underbrace{\mathcal{Z}_{3} \oplus \cdots \oplus \mathcal{Z}_{3}}_{k \text { times }}$.

35

Recall the square root of any complex number z exists. Observe C^{*} is closed under the square root operation.
Assume for the sake of contradiction, there is an isomorphism $\phi: C^{*} \rightarrow R^{*} \oplus R^{*}$. Then
by surjectivity there is some complex z where $\phi(z)=(-1,-1)$. It follows

$$
\begin{aligned}
\phi(\sqrt{z} \cdot \sqrt{z}) & =(-1,-1) \\
\phi(\sqrt{z}) \cdot \phi(\sqrt{z}) & = \\
(\phi(\sqrt{z}))^{2} & = \\
(a, b)^{2} & = \\
\left(a^{2}, b^{2}\right) & =
\end{aligned}
$$

In other words $a^{2}=-1$ and $b^{2}=-1$, but either of these leads to a contradiction, as no square of a real number is negative.

46

The infinite group is $\mathcal{Z} \oplus D_{4} \oplus A_{4}$. Clearly $\left\{\left(e_{Z}, x, e_{A_{4}}\right) \mid x \in D_{4}\right\}$ and $\left\{\left(e_{Z}, e_{D_{4}}, x\right) \mid\right.$ $\left.x \in A_{4}\right\}$ are both subgroups.

48

Claim. It is all permutations on $\mathcal{Z}_{2} \oplus \mathcal{Z}_{2}$ which maps $(0,0)$ to itself.
Note. Our characterization is consistent with the fact the identity is always mapped to itself, and that isomorphism is a bijection.

Fact. In any group, fixing element a_{0}, then for any elements $b_{0} \neq b_{1}$, we have $a_{0} b_{0} \neq$ $a_{0} b_{1}$.

Lemma. For any $(a, b) \in \mathcal{Z}_{2} \oplus \mathcal{Z}_{2},(a, b)^{2}=\left(a^{2}, b^{2}\right)=(0,0)=e$, As $0^{2}=0$ and $1^{2}=0$.
Lemma. Any two elements of $X=\{(0,1),(1,0),(1,1)\}$ multiplies to the third.
For distinct $a, b, c \in X, a b \neq(0,0)$ since $a a=(0,0)$. Also $a b \neq a$ since $a(0,0)=a$. Similarly $a b \neq b$. Therefore the only remaining choice is $a b=c$.

Theorem. Our permutations preserve the operation.
We know for distinct elements $a, b, c \in X$, we have $a b=c$. As ϕ is a permutation on these, We have $X=\{\phi(a), \phi(b), \phi(c)\}$. It follows $\phi(a) \phi(b)=\phi(c)$. That concludes $\phi(c)=\phi(a b)=\phi(a) \phi(b)$.

