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Problems

4

Clearly, For arbitrary a, c ∈ G and b, d ∈ H

ac = ca ∧ bd = db

↔(ac, bd) = (ca, db)

↔(a, b)(c, d) = (c, d)(a, b)

I guess the general case is any group-theoretic property on both G and H is also on
G⊕H, and vice verca.

5

Assume for the sake of contradiction Z ⊕ G is cyclic. Then by definition there is a
generator (a, b). Then necessarily ⟨a⟩ = Z and ⟨b⟩ = G as by definition we have
(a, b)k = (ak, bk). Observe ⟨a⟩ is of infinite order. Fix c ∈ Z, Then we know ak = c for
some k. Compute (a, b)k = (ak, bk) = (c, d). Let h be the element other than d in G.
Now we can’t generate (c, h). By theorem 4.1 (page 76) if ai = ak then i = k. In other
words, k is the only integer that yields ak = c.

6

Clearly (1, 1) ∈ Z8 ⊕ Z2 is of order 8. We claim no element of Z4 ⊕ Z4 is of order 8,
Which suffices to solve the problem.

From Theorem 4.3 (page 81) we know any element of Z4 is of order, which divides 4.
In other words, For any element a, there is k ≤ 4 such that k|a| = 4. Similarly for
another element b we have k′|b| = 4.

So for any (a, b) ∈ Z4 ⊕Z4, Observe (a, b)4 = (a4, b4) = (ak|a|, bk
′|b|) = ((a|a|)k, (b|b|)k

′
) =

(0k, 0k
′
) = (0, 0). So order of (a, b) is at most 4.

15

Let ϕ : C → R⊕R where ϕ(a+ bi) = (a, b).

� Injective. ϕ(a+bi) = ϕ(c+di) implies (a, b) = (c, d), and in turn a = c and b = d.

� Surjective. For any (a, b) we have ϕ(a+ bi) = (a, b).

� Preserves Operation. ϕ(a + bi)ϕ(c + di) = (a, b)(c, d) = (a + c, b + d) = ϕ((a +
c) + (b+ d)i) = ϕ((a+ bi) + (c+ di)).
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17

Since G⊕H is cyclic, it has a generator (a, b). It follows ⟨a⟩ = G and ⟨b⟩ = H. If that
is not the case, Then we can select an element from G or H whereby (a, b)k = (ak, bk)
won’t cover it, on it corresponding index.

21

Denote the equivalence ⟨(g, h)⟩ = ⟨g⟩ ⊕ ⟨h⟩ by (1).

Recall theorem 8.1 (page 158).

By definition we know (g, h)k = (gk, hk) where gk ∈ ⟨g⟩ and hk ∈ ⟨h⟩.

The condition is |g| and |h| are coprime. Observe it is equivalent to lcm(|g|, |h|) = |g||h|.

(Necessity) We show given (1), The condition holds. Since sets are equal, and cardinality
of L.H.S is |g| · |h|, Then |(g, h)| = |g| · |h|. By thm 8.1, The condition is satisfied.

(Sufficent) We show given the condition, (1) holds. By thm 8.1, |(g, h)| = |g| · |h|. So
its cardinality is the same as R.H.S, and it is a subset of it. It follows (1) holds.

23

Any element in Z3 is of order 3, except the identity 0. Consider an arbitrary non-identity
element (x1, x2, . . . , xk) ̸= e = (0, . . . , 0)︸ ︷︷ ︸

k times

in Z3 ⊕ · · · ⊕ Z3︸ ︷︷ ︸
k times

. We claim |(x1, . . . , xk)| = 3.

Following the fact all non-identity elements are of order 3, and we have some xi ̸= 0,

(x1, x2, . . . , xk)
1 = (x1

1, x
1
2, . . . , x

1
k) ̸= e

(x1, x2, . . . , xk)
2 = (x2

1, x
2
2, . . . , x

2
k) ̸= e

(x1, x2, . . . , xk)
3 = (0, 0, . . . , 0) = e

Therefore we have 3k − 1 elements of order 3 in Z3 ⊕ · · · ⊕ Z3︸ ︷︷ ︸
k times

.

35

Recall the square root of any complex number z exists. Observe C∗ is closed under the
square root operation.

Assume for the sake of contradiction, there is an isomorphism ϕ : C∗ → R∗⊕R∗. Then
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by surjectivity there is some complex z where ϕ(z) = (−1,−1). It follows

ϕ(
√
z ·

√
z) = (−1,−1)

ϕ(
√
z) · ϕ(

√
z) =

(ϕ(
√
z))2 =

(a, b)2 =

(a2, b2) =

In other words a2 = −1 and b2 = −1, but either of these leads to a contradiction, as no
square of a real number is negative.

46

The infinite group is Z ⊕ D4 ⊕ A4. Clearly {(eZ , x, eA4) | x ∈ D4} and {(eZ , eD4 , x) |
x ∈ A4} are both subgroups.

48

Claim. It is all permutations on Z2 ⊕Z2 which maps (0, 0) to itself.

Note. Our characterization is consistent with the fact the identity is always mapped
to itself, and that isomorphism is a bijection.

Fact. In any group, fixing element a0, then for any elements b0 ̸= b1, we have a0b0 ̸=
a0b1.

Lemma. For any (a, b) ∈ Z2⊕Z2, (a, b)
2 = (a2, b2) = (0, 0) = e, As 02 = 0 and 12 = 0.

Lemma. Any two elements of X = {(0, 1), (1, 0), (1, 1)} multiplies to the third.

For distinct a, b, c ∈ X, ab ̸= (0, 0) since aa = (0, 0). Also ab ̸= a since a(0, 0) = a.
Similarly ab ̸= b. Therefore the only remaining choice is ab = c.

Theorem. Our permutations preserve the operation.

We know for distinct elements a, b, c ∈ X, we have ab = c. As ϕ is a permutation on
these, We have X = {ϕ(a), ϕ(b), ϕ(c)}. It follows ϕ(a)ϕ(b) = ϕ(c). That concludes
ϕ(c) = ϕ(ab) = ϕ(a)ϕ(b).
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