Chapter 09

Mostafa Touny

October 21, 2023

Contents

Problems

1.																																	2
2.									•		•		•			•		•		•											•		2
6.	•								•					•					•	•			•							•	•		2
8.	•		•				•		•	•	•	•	•	•	•	•	•	•	•	•			•				•		•	•	•		2
9.	•		•				•		•	•	•	•	•	•	•	•	•	•	•	•			•				•		•	•	•		3
10	•	•	•		•		•		•	•	•	•	•	•	•	•	•	•	•	•		•	•						•	•	•		3
12	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•		3
14	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•						•	•	•		3
22	•						•	•	•		•		•	•		•		•	•	•	•	•	•		•					•	•	•	4
37																																	4

 $\mathbf{2}$

Problems

1

We use *Theorem 9.1* (page 175) to show the answer is NO. (23) $\in S_3$ and yet, $(23)H(23) = \{(23)(1)(23), (23)(12)(23)\} = \{(1), (13)\} \not\subset H.$

$\mathbf{2}$

We use *Theorem 9.1* (page 174). We know from earlier chapters, A_n is a subgroup of S_n . Then for any $x \in S_n$ and any $h \in A_n$, we get a permutation xhx^1 consisting of even 2-cycles. To see why, Observe we know x^{-1} has the same number of 2-cycles as x. Whether x consists of even or odd number of 2-cycles, The contribution of 2-cycles of both x and x^{-1} is even.

6

NO. It suffices to take some matrix $h \in H$ and a matrix $x \in GL(2, R)$, and show $xhx^{-1} \notin H$. Clearly:

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}^{-1} \\ = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \end{bmatrix} = \begin{bmatrix} 4/3 & -1 \\ -1/3 & 2 \end{bmatrix} \notin H$$

8

We immediately prove the general case of $\langle k \rangle / \langle n \rangle \cong \mathbb{Z}_{n/k}$, given k divides n.

For arbitrary two elements of under the operation:

$$\begin{split} (k^{a}\langle n\rangle)(k^{b}\langle n\rangle) &= k^{a+b}\langle n\rangle & \text{Definition} \\ &= k^{\frac{n}{k}q+r}\langle n\rangle, 0 \leq r < n/k & \text{Euclidean Division} \\ &= k^{\frac{n}{k}q}k^{r}\langle n\rangle & \\ &= k^{r}(k^{\frac{n}{k}q}\langle n\rangle) & \text{Commutativity and Associativity of } \mathcal{Z} \\ &= k^{r}(n\langle n\rangle) & \\ &= k^{r}\langle n\rangle \end{split}$$

But in $\mathcal{Z}_{n/k}$, $ab = a + b \mod \frac{n}{k}$, which corresponds to $(k^a \langle n \rangle)(k^b \langle n \rangle) = k^{a+b \mod r} \langle n \rangle$.

9

Fact. Citing from the course TA, Ibrahim, left/right cosets parition the group G. (msh naseek ya bob).

Since the index is given to be 2, We know $G/H = \{H, g_0H\} = \{H, Hg_0\}.$

Consider arbitrary $x \in G$. If $x \in H$ then xH = H = Hx from Lemma (page 139). If $x \notin H$, Then $x \in g_0H$ and $x \in Hg_0$ by our Fact. It follows $g_0h_0 = x = h_1g_0$ for some $h_0, h_1 \in H$, and in turn $xH = g_0H = Hg_0 = Hx$.

It follows H is normal.

10

(a).

By Theorem 9.1 (page 175), We construct $xhx^{-1} \notin H$ for some $x \in A_4$ and $h \in H$. Let h = (12)(34) and x = (13)(23). Then $x^{-1} = (23)(13)$, and in turn $xhx^{-1} = (13)(23)(12)(34)(23)(13)$. In other notation,

$$xhx^{-1} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{bmatrix} \neq (12)(34)$$

12

For arbitrary abelian group G with elements a_0 and a_1 , and factor group G/H, We have:

$$(a_0H)(a_1H) = (a_0a_1)H$$
 Definition
= $(a_1a_0)H$ G is Abelian
= $(a_1H)(a_0H)$

$\mathbf{14}$

We know the identity of $\mathcal{Z}_{24}/\langle 8 \rangle$ is $0 + \langle 8 \rangle$. We are looking for smallest k satisfying

$$(14 + \langle 8 \rangle)^k = 0 + \langle 8 \rangle$$
$$14^k + \langle 8 \rangle =$$

Thanks for the course TA, Ibrahim, That can be satisfied while $14^k \neq 0$.

From the *lemma* (page 139), This is true if and only if $14^k \in \langle 8 \rangle$. In other words, We want smallest positive k, such that $14^k = 8^m$ for some integer m. By computation, k = 3 as $14^3 = 8$.

$\mathbf{22}$

Observe $(Z \oplus Z)/\langle (2,2) \rangle = \{(0,0) + \langle (2,2) \rangle, (0,1) + \langle (2,2) \rangle), (1,0) + \langle (2,2) \rangle, (1,1) + \langle (2,2) \rangle\}$. To see why consider arbitrary $(a,b) \in Z \oplus Z$ and apply Euclid's division theorem to get $a = 2k_0 + r_0$ and $b = 2k_1 + r_1$ where $0 \le r_0, r_1 < 2$.

Then the order is 4.

It is not cyclic as no single (a, b) can generate all of (0, 0), (0, 1), (1, 0), (1, 1).

$\mathbf{37}$

Recall the notation of |g| as the order of element g. By definition $g^{|g|} = 0$. Then $(gH)^{|g|} = g^{|g|}H = H$. By Corollary 2 (page 77), |gH| divides |g|.