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Problems

1

We use Theorem 9.1 (page 175) to show the answer is NO. (23) ∈ S3 and yet,
(23)H(23) = {(23)(1)(23), (23)(12)(23)} = {(1), (13)} ̸⊂ H.

2

We use Theorem 9.1 (page 174). We know from earlier chapters, An is a subgroup of
Sn. Then for any x ∈ Sn and any h ∈ An, we get a permutation xhx1 consisting of
even 2-cycles. To see why, Observe we know x−1 has the same number of 2-cycles as x.
Whether x consists of even or odd number of 2-cycles, The contribution of 2-cycles of
both x and x−1 is even.

6

NO. It suffices to take some matrix h ∈ H and a matrix x ∈ GL(2, R), and show
xhx−1 ̸∈ H. Clearly:[

2 1
1 2

] [
1 1
0 1

] [
2 1
1 2

]−1

=

[
2 1
1 2

] [
1 1
0 1

] [
2/3 −1/3
−1/3 2/3

]
=

[
4/3 −1
−1/3 2

]
̸∈ H

8

We immediately prove the general case of ⟨k⟩/⟨n⟩ ∼= Zn/k, given k divides n.

For arbitrary two elements of under the operation:

(ka⟨n⟩)(kb⟨n⟩) = ka+b⟨n⟩ Definition

= k
n
k
q+r⟨n⟩, 0 ≤ r < n/k Euclidean Division

= k
n
k
qkr⟨n⟩

= kr(k
n
k
q⟨n⟩) Commutativity and Associativity of Z

= kr(n⟨n⟩)
= kr⟨n⟩

But in Zn/k, ab = a+ b mod n
k
, which corresponds to (ka⟨n⟩)(kb⟨n⟩) = ka+b mod r⟨n⟩.

2



9

Fact. Citing from the course TA, Ibrahim, left/right cosets parition the group G. (msh
naseek ya bob).

Since the index is given to be 2, We know G/H = {H, g0H} = {H,Hg0}.

Consider arbitrary x ∈ G. If x ∈ H then xH = H = Hx from Lemma (page 139). If
x ̸∈ H, Then x ∈ g0H and x ∈ Hg0 by our Fact. It follows g0h0 = x = h1g0 for some
h0, h1 ∈ H, and in turn xH = g0H = Hg0 = Hx.

It follows H is normal.

10

(a).

By Theorem 9.1 (page 175), We construct xhx−1 ̸∈ H for some x ∈ A4 and h ∈ H.

Let h = (12)(34) and x = (13)(23). Then x−1 = (23)(13), and in turn xhx−1 =
(13)(23)(12)(34)(23)(13). In other notation,

xhx−1 =

[
1 2 3 4
3 4 1 2

]
̸= (12)(34)

12

For arbitrary abelian group G with elements a0 and a1, and factor group G/H, We
have:

(a0H)(a1H) = (a0a1)H Definition

= (a1a0)H G is Abelian

= (a1H)(a0H)

14

We know the identity of Z24/⟨8⟩ is 0 + ⟨8⟩. We are looking for smallest k satisfying

(14 + ⟨8⟩)k = 0 + ⟨8⟩
14k + ⟨8⟩ =

Thanks for the course TA, Ibrahim, That can be satisfied while 14k ̸= 0.

From the lemma (page 139), This is true if and only if 14k ∈ ⟨8⟩. In other words, We
want smallest positive k, such that 14k = 8m for some integer m. By computation,
k = 3 as 143 = 8.
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22

Observe (Z ⊕ Z)/⟨(2, 2)⟩ = {(0, 0) + ⟨(2, 2)⟩, (0, 1) + ⟨(2, 2)⟩), (1, 0) + ⟨(2, 2)⟩, (1, 1) +
⟨(2, 2)⟩}. To see why consider arbitrary (a, b) ∈ Z ⊕ Z and apply Euclid’s division
theorem to get a = 2k0 + r0 and b = 2k1 + r1 where 0 ≤ r0, r1 < 2.

Then the order is 4.

It is not cyclic as no single (a, b) can generate all of (0, 0), (0, 1), (1, 0), (1, 1).

37

Recall the notation of |g| as the order of element g. By definition g|g| = 0. Then
(gH)|g| = g|g|H = H. By Corollary 2 (page 77), |gH| divides |g|.
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