Chapter 09

Mostafa Touny

October 21, 2023

Contents

Problems 2
1 2
2 2
6 2
8 2
9 3
10 3
12 3
14 3
22 4
37 4

Problems

1
We use Theorem 9.1 (page 175) to show the answer is NO. (23) $\in S_{3}$ and yet, $(23) H(23)=\{(23)(1)(23),(23)(12)(23)\}=\{(1),(13)\} \not \subset H$.

2

We use Theorem 9.1 (page 174). We know from earlier chapters, A_{n} is a subgroup of S_{n}. Then for any $x \in S_{n}$ and any $h \in A_{n}$, we get a permutation $x h x^{1}$ consisting of even 2 -cycles. To see why, Observe we know x^{-1} has the same number of 2 -cycles as x. Whether x consists of even or odd number of 2-cycles, The contribution of 2-cycles of both x and x^{-1} is even.

6

NO. It suffices to take some matrix $h \in H$ and a matrix $x \in G L(2, R)$, and show $x h x^{-1} \notin H$. Clearly:

$$
\begin{aligned}
{\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] } & {\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]^{-1} } \\
& =\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
-1 / 3 & 2 / 3
\end{array}\right]=\left[\begin{array}{cc}
4 / 3 & -1 \\
-1 / 3 & 2
\end{array}\right] \notin H
\end{aligned}
$$

8

We immediately prove the general case of $\langle k\rangle /\langle n\rangle \cong \mathcal{Z}_{n / k}$, given k divides n.
For arbitrary two elements of under the operation:

$$
\begin{array}{rlr}
\left(k^{a}\langle n\rangle\right)\left(k^{b}\langle n\rangle\right) & =k^{a+b}\langle n\rangle & \text { Definition } \\
& =k^{\frac{n}{k} q+r}\langle n\rangle, 0 \leq r<n / k & \\
& =k^{\frac{n}{k} q} k^{r}\langle n\rangle & \\
& =k^{r}\left(k^{\frac{n}{k} q}\langle n\rangle\right) & \\
& =k^{r}(n\langle n\rangle) & \\
& =k^{r}\langle n\rangle &
\end{array}
$$

But in $\mathcal{Z}_{n / k}, a b=a+b \bmod \frac{n}{k}$, which corresponds to $\left(k^{a}\langle n\rangle\right)\left(k^{b}\langle n\rangle\right)=k^{a+b} \bmod r\langle n\rangle$.

9

Fact. Citing from the course TA, Ibrahim, left/right cosets parition the group G. (msh naseek ya bob).

Since the index is given to be 2, We know $G / H=\left\{H, g_{0} H\right\}=\left\{H, H g_{0}\right\}$.
Consider arbitrary $x \in G$. If $x \in H$ then $x H=H=H x$ from Lemma (page 139). If $x \notin H$, Then $x \in g_{0} H$ and $x \in H g_{0}$ by our Fact. It follows $g_{0} h_{0}=x=h_{1} g_{0}$ for some $h_{0}, h_{1} \in H$, and in turn $x H=g_{0} H=H g_{0}=H x$.

It follows H is normal.

10

(a).

By Theorem 9.1 (page 175), We construct $x h x^{-1} \notin H$ for some $x \in A_{4}$ and $h \in H$.
Let $h=(12)(34)$ and $x=(13)(23)$. Then $x^{-1}=(23)(13)$, and in turn $x h x^{-1}=$ $(13)(23)(12)(34)(23)(13)$. In other notation,

$$
x h x^{-1}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right] \neq(12)(34)
$$

12
For arbitrary abelian group G with elements a_{0} and a_{1}, and factor group G / H, We have:

$$
\begin{array}{rlr}
\left(a_{0} H\right)\left(a_{1} H\right) & =\left(a_{0} a_{1}\right) H & \text { Definition } \\
& =\left(a_{1} a_{0}\right) H & G \text { is Abelian } \\
& =\left(a_{1} H\right)\left(a_{0} H\right) &
\end{array}
$$

14

We know the identity of $\mathcal{Z}_{24} /\langle 8\rangle$ is $0+\langle 8\rangle$. We are looking for smallest k satisfying

$$
\begin{aligned}
(14+\langle 8\rangle)^{k} & =0+\langle 8\rangle \\
14^{k}+\langle 8\rangle & =
\end{aligned}
$$

Thanks for the course TA, Ibrahim, That can be satisfied while $14^{k} \neq 0$.
From the lemma (page 139), This is true if and only if $14^{k} \in\langle 8\rangle$. In other words, We want smallest positive k, such that $14^{k}=8^{m}$ for some integer m. By computation, $k=3$ as $14^{3}=8$.

22

Observe $(Z \oplus Z) /\langle(2,2)\rangle=\{(0,0)+\langle(2,2)\rangle,(0,1)+\langle(2,2)\rangle),(1,0)+\langle(2,2)\rangle,(1,1)+$ $\langle(2,2)\rangle\}$. To see why consider arbitrary $(a, b) \in Z \oplus Z$ and apply Euclid's division theorem to get $a=2 k_{0}+r_{0}$ and $b=2 k_{1}+r_{1}$ where $0 \leq r_{0}, r_{1}<2$.

Then the order is 4 .
It is not cyclic as no single (a, b) can generate all of $(0,0),(0,1),(1,0),(1,1)$.

37

Recall the notation of $|g|$ as the order of element g. By definition $g^{|g|}=0$. Then $(g H)^{|g|}=g^{|g|} H=H$. By Corollary 2 (page 77), $|g H|$ divides $|g|$.

