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Problems

8

Homomorphism. If σ1 and σ2 are both even or both odd, then σ1σ2 is even and
sgn(σ1)sgn(σ2) = 1. If one of them is even and the other is odd, then σ1σ2 is odd
and sgn(σ1)sgn(σ2) = 1 ∗ −1 = −1.

Kernel. Ker sgn is the subgroup of even permutations of G.

An is a normal subgroup of Sn. When G = Sn, Ker sgn = An. By corollary (page
198), Ker sgn is a normal subgroup.

Ex 23 in Ch5. Now consider the homomorphism sgn on arbitrary subgroup H. We
know the identity must be sgn(H). If sgn(H) = {1} then all permutations of H are
even. Otherwise sgn(H) = {0, 1}. By property 5 in theorem 10.2 (page 197), we have
n-to-1 mapping from even permutations, and n-to-1 mapping from odd permutations.
Hence exactly half of H are even.
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By definition, Zn/⟨k⟩ = {x + ⟨k⟩ | x ∈ Zn}. But by Euclid’s Division, x + ⟨k⟩ =
(kq + r) + ⟨k⟩ = r + (kq + ⟨k⟩) = r + ⟨k⟩. It follows Zn/⟨k⟩ = {x+ ⟨k⟩ | x ∈ Zk}.

Now define ϕ : Zn/⟨k⟩ → Zk by ϕ(x+⟨k⟩) = x. It is injective as ϕ(x+⟨k⟩) = ϕ(y+⟨k⟩)
implies x = y. Surjective as for any y ∈ Zk we have ϕ(y+ ⟨k⟩ = y. Finally it preservers
the operation as ϕ(x+ ⟨k⟩) + ϕ(y + ⟨k⟩) = x+ y = ϕ((x+ y) + ⟨k⟩).
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Let x be arbitrary such that ϕ(x) = 9. Then

ϕ(x)− ϕ(23) = 9− 9 = 0

ϕ(x− 23) = 0

x− 23 ∈ {0, 10, 20}
x+ 7 ∈ {0, 10, 20}

x ∈ {23, 3, 13}
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Let ϕ be an arbitrary homomorphism.

Since bothZ8⊕Z2 and Z4⊕Z4 have exactly 16 elements, the surjectivity of homomorphism
ϕ implies isomorphism.

2



Recall property 5, of Theorem 6.2 (page 126) which states isomorphism preserves orders.
So 8 = |(1, 0)| = |ϕ(1, 0)|. So there is some element in Z4 ⊕ Z4 which is of order 8.
Contradiction.

Observe all elements of Z4 are of orders 1, 2, 4. Since all of them divides 4, The order
of any element of Z4 ⊕Z4 is at most 4.
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(1). Z20 onto Z8. Let ϕ be an arbitrary homomorphism. By surjectivity we know
ϕ(Z20) = Z8. By theorem 10.2, 5 (page 197), 20 is a multiple of 8. Contradiction. It
follows the number of homomorphisms is zero.

P.S. The TA Ibrahim notified me Math is not about hacking puzzles but seeing the
structure behind. He told me an alternative proof by cosets and quotient groups. For
academic integrity I present the proof I discovered on my own.

(2). Z20 to Z8. Let ϕ : Z20 → Z8 be an arbitrary homomorphism. We follow the
procedure of example 10 (page 199). Let ϕ(1) = a. Then |a| divides both 20 and 8. It
follows |a| ∈ {1, 2, 4} and in turn a ∈ {0, 2, 4, 6}. Since ϕ(1) decides the homomorphism,
There are 4 possible homomorphisms.

24

(a). In light of property 2 of theorem 10.1 (page 196), Observe 6 = ϕ(7) = ϕ(7 ·
1) = 7 · ϕ(1). But 13 · 7 mod 15 = 1. It follows ϕ(1) = 13 · 6 = 3. Therefore
ϕ(x) = ϕ(1 · x) = ϕ(1) · x = 3x.

(b). The image is all multiples of 3 strictly less than 15.

(c). By definition we are looking for x ∈ Z50 such that ϕ(x) = 3x = 0. But 3x ≡ 0 if
and only if 3x − 0 = 3x is a multiple of 15 if and only if x = 5i. In other words the
kernel are multiples of 5 strictly less than 50.

(d). We want to characterize x such that ϕ(x) = 3. But by definition we know
ϕ(x) = 3x. But

3 ≡ 3x mod 15

3x− 3 = 15i

x− 1 = 5i

x = 5i+ 1

So ϕ−1(3) = {5i+ 1 | 0 ≤ i ≤ 9}
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