Chapter 11

Mostafa Touny

December 1, 2023

Contents

Problems 2
2 2
5 2
10 3
22 3
31 4

Problems

2

$n=3$.
The table in page 213 shows that.

5

$45=3^{2} \cdot 5^{1}$. By the fundamental theorem of finite abelian groups, All possible groups are

$$
\begin{align*}
Z_{9} \oplus Z_{5} & \approx Z_{45} \tag{1}\\
Z_{3} \oplus Z_{3} \oplus Z_{5} & \approx Z_{3} \oplus Z_{15} \tag{2}
\end{align*}
$$

Group (1) has element 3 whose order is $|3|=15$. Group (2) has element $(0,1)$ whose order is $|(0,1)|=15$. Therefore, Any finite abelian group of order 45 has an element of order 15.

By The fundamental theorem of cyclic groups (page 81) we know all elements orders of Z_{3} are: 1,3 , and all elements orders of Z_{15} are: $1,3,5$. But by Theorem 8.1 (page 158) all elements' orders of $Z_{3} \oplus Z_{15}$ are: $1,3,5,15$, by computing $l c m$ of all possible pairs of elements orders. Therefore, It is not necessarily the case any finite abelian group of order 45 has an element of order 9 .

10

$360=2^{3} \cdot 3^{2} \cdot 5^{1}$.
For $2^{3}, k=3$,

$$
\begin{aligned}
3 & Z_{8} \\
2+1 & Z_{4} \oplus Z_{2} \\
1+1+1 & Z_{2} \oplus Z_{2} \oplus Z_{2}
\end{aligned}
$$

For $3^{2}, k=2$,

$$
\begin{aligned}
2 & Z_{9} \\
1+1 & Z_{3} \oplus Z_{3}
\end{aligned}
$$

For $5^{1}, k=1$,

$$
1 \quad Z_{5}
$$

It follows all groups are

$$
\begin{aligned}
& Z_{8} \oplus Z_{9} \oplus Z_{5} \\
& Z_{8} \oplus Z_{3} \oplus Z_{3} \oplus Z_{5} \\
& Z_{4} \oplus Z_{2} \oplus Z_{9} \oplus Z_{5} \\
& Z_{4} \oplus Z_{2} \oplus Z_{3} \oplus Z_{3} \oplus Z_{5} \\
& Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{9} \oplus Z_{5} \\
& Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{3} \oplus Z_{3} \oplus Z_{5}
\end{aligned}
$$

22

By the fundamental theorem of finite abelian groups, $G \approx Z_{p_{1}^{n_{1}}} \oplus Z_{p_{2}^{n_{2}}} \oplus \cdots \oplus Z_{p_{k}^{n_{k}}}$ where $|G|=p_{1}^{n_{1}} \cdot . . \cdot p_{k}^{n_{k}}$. We claim $n_{1}=n_{2}=\cdots=n_{k}=1$.

Assume for contradiction some $n_{i}>1$. Then by the theorem we can substitute $Z_{p_{i}^{n_{i}}}$ by $Z_{p_{i}^{1}} \oplus Z_{p_{i}^{1}} \oplus Z_{p_{i}^{n_{i}-2}}$. If $n_{i}=2$ then just ignore the third term. It follows we have two distinct subgroups of cardinality p_{i}. In other words, two distinct subgroups of the same order of divisor p_{i} of $|G|$. Contradiction.

Therefore $G \approx Z_{p_{1}^{1}} \oplus Z_{p_{2}^{1}} \oplus \cdots \oplus Z_{p_{k}^{1}}$. But all p_{i} s are coprime, So $G \approx Z_{p_{1} \cdots p_{k}}$, Concluding it is cyclic.

31

If $a=b$ then $a^{2}=b^{2}$. So a and b are distinct. Moreover $\left(a^{2}\right)^{2}=a^{4}=e$ and $\left(b^{2}\right)^{2}=b^{4}=e$. So we have distinct elements a^{2} and b^{2} of order 2 .

By the fundamental theorem of finite abelian groups, All possible classes are:

$$
\begin{align*}
& Z_{16} \tag{3}\\
& Z_{8} \oplus Z_{2} \tag{4}\\
& Z_{4} \oplus Z_{4} \tag{5}\\
& Z_{4} \oplus Z_{2} \oplus Z_{2} \tag{6}\\
& Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{2} \tag{7}
\end{align*}
$$

(3) is excluded as it has only one element of order 2, namely 8 .
(4) is excluded. All orders of elements are $1,2,4,8$ and 1,2 respectively. Elements of order 4 in group (4) can be only obtained by an element of order 4 in Z_{8}. Otherwise the $l \mathrm{~cm}$ would be $1,2,8$. There are only two elements of order 4 in Z_{8}, namely 2 and 6. So all possible elements of order 4 in group (4) are $(2,0),(6,0),(2,1),(6,1)$. But the square of any of them is $(4,0)$, Violating the given condition $a^{2} \neq b^{2}$.
(6) is excluded. All orders of elements are $1,2,4$ and 1,2 respectively. There are only two elements in Z_{8} of order 4, namely 1 and 3 . So all possible elements of order 4 in group (4) are $(1,0),(3,0),(1,1),(3,1)$. But the square of any of them is $(2,0)$, Violating the given condition of $a^{2} \neq b^{2}$.
(7) is excluded as all elements orders of Z_{2} are 1,2 , So taking $l c m$ would always be 1,2 . So it has no element of order 4.

Therefore the class is group (5).

